
WiFi and Multiple Interfaces: Adequate for Virtual
Reality?

Huanle Zhang*

University of California, Davis
USA

Email: dtczhang@ucdavis.edu

Ahmed Elmokashfi
Simula Metropolitan Center for Digital Engineering

Norway
Email: ahmed@simula.no

Prasant Mohapatra
University of California, Davis

USA
Email: pmohapatra@ucdavis.edu

Abstract—In this paper, we investigate whether IEEE 802.11ac
WiFi can support VR applications. To this end we conduct a
controlled study of WiFi performance in an indoor setting. Our
measurements reveal that WiFi transmissions suffer from high
latency and jitter, which makes WiFi systems inadequate for VR
applications. For example, the round-trip delay can be as high
as 228ms, and more than 24.2% packets experience jitter higher
than 1ms. To locate the root cause of the high latency and jitter,
we dissect the network stack layer by layer and find that the main
culprit is the wireless channel transmission time. To reduce the
channel transmission time, we propose using multiple network
interfaces running on non-overlapping channels. By using only
two interfaces, we (1) reduce the median round-trip delay by
28.6% and jitters of higher than 1ms by 11.5% compared to
the best single interface in UDP transmissions, and (2) reduce
the median round-trip delay by 38.9% in TCP transmissions. We
believe that this paper sheds some light on whether we can make
today’s WiFi systems VR-ready by using multiple interfaces.

Index Terms—VR, 802.11ac, MPTCP, WiFi, Latency

I. INTRODUCTION

Virtual Reality (VR) systems have undergone a rapid devel-
opment in recent years. According to Business Insider, sales of
VR headsets are expected to grow at a swift 99% compound
annual growth rate between 2015 and 2020, creating an
estimated annual revenue of $2.8 billion in 2020 only [1].
VR applications, however, pose unique challenges to network
requirements in terms of bandwidth, latency and packet loss.
Take 360◦ multi-perspective videos, which are one of the
VR killer applications, as an example. They are data-hungry,
latency-sensitive and also vulnerable to packet loss. A recent
white paper by Huawei categorizes 360 VR video systems into
four levels (see Table I) [2]. Several wireless technologies now
are able to provide data rates that meet the expectations of all
four levels (e.g., IEEE 802.11ad, 802.11ac).

However, current VR products continue to rely on High-
Definition Multimedia Interface (HDMI) cables. The cable
not only limits the user’s mobility and interferes with VR
experience, but also creates a tripping hazard since the VR
headset covers the user’s eyes [3]. Currently, there are two
commercial products that provide wireless connectivity for
VR headsets [4]. These products use a proprietary wireless
interface that operates in the 60GHz band. The high through-
put that 60GHz band and mmWave in general provide makes

*Huanle Zhang interned at Simula Research Lab during this work

TABLE I
NETWORK REQUIREMENTS FOR 360 VR VIDEOS FROM HUAWEI VR

WHITEPAPER [2]

Standard Bandwidth RTT Packet Loss
Pre-VR 25 Mbit/s 40 ms 1.4E-4

Entry-Level VR 100 Mbit/s 30 ms 1.5E-5
Advanced VR 418 Mbit/s 20 ms 1.9E-6
Ultimate VR 2.35 Gbit/s 10 ms 5.5E-8

them an obvious first choice for wireless VR [5]. There is,
however, one key challenge, which is the vulnerability of
mmWave to blockage of the line of sight between transmitters
and receivers. Responding to this, Abari et. al built a system
that uses reflectors to reroute signals around blockages [3].
While this solution can help mitigate blockages, it involves
deploying extra components, i.e., reflectors. Further, reflectors
placement is dependent on room geometry and layout. Others
proposed hybrid WiFi and 60GHz systems [6], [7]. However,
because of the high heterogeneous links, the overall perfor-
mance can be worse than a single link [6]–[8], complicating
system design and wasting networking resources.

WiFi systems operating in the 5GHz band and lower have
witnessed huge success in the past decades. They are expected
to continue to grow at a 17.8% compound annual growth rate
between 2015 and 2020, creating $33.6 billion of market worth
in 2020 only [9]. Therefore, leveraging WiFi transmissions to
support VR applications benefits both WiFi and VR. The latest
widely adopted WiFi standard, IEEE 802.11ac, comes with
a theoretical speed up to 6.9Gbps [10]. Measurements of a
large-scale enterprise WiFi system (Cisco Meraki) shows that
802.11ac clients are already running in Gbps data rates [11].

Despite the availability of high data rate WiFi networks, VR
systems do not widely adopt WiFi transmissions. This paper
takes a closer look at this lack of adoption and whether WiFi
systems can be engineered to support VR. Our measurement
reveals that WiFi transmissions suffer from high latency and
jitter, which makes WiFi systems inadequate for VR appli-
cations. For example, we ran an experiment to measure the
Round-Trip Delay Time (RTT) of two WiFi devices that are
within one-hop direct communication link for a day (more
than 800K data points collected). We find that in spite of
99.96% of the packets are echoed back within 10ms, the RTT
can be as high as 227.8ms and more than 24.2% packets



experience jitter higher than 1ms. It is difficult to guarantee
Quality of Service (QoS) for real-time multimedia applications
in the presence of such high jitters [12], [13].

To locate the root cause of the observed latency, we dissect
network stack layer by layer and measure the packets’ stay
time at each layer. Specifically, we record the timestamps of
each packet entering UDP layer, IP layer, mac80211 layer,
when the packet is passed to the WiFi driver for sending it
out and the timestamp when the peer ACK is received by the
driver. We find that the channel transmission time, i.e., the
latency of a packet entering WiFi driver and being ACKed,
dominates the latency.

To improve the channel transmission time, we propose to
use multiple WiFi Network Interface Cards (NICs) running
on non-overlapping channels. The reasoning is straightforward
yet effective: the chances of accessing the wireless channel
is higher when multiple interfaces are available than a sin-
gle interface. To quantify the performance improvement, we
prototype two devices each is equipped with two NICs. The
experiment results of UDP transmissions show that we reduce
the median RTT by 28.6% and jitters of higher than 1ms
by 11.5% compared to the best single interface. We also
evaluate the effectiveness of multiple-interface transmissions
with MPTCP and the experiment results indicate that TCP
packets witness even higher round-trip delay improvement
than UDP, achieving 38.9% median delay reduction. We
expect WiFi systems to fully support 360 VR videos by using
more NICs.

In this paper, we make following contributions:
1) We measure the performance of WiFi systems in the

context of VR applications. We observe that it is fluctu-
ations in latency rather than bandwidth and packet loss
that makes WiFi incapable for VR applications.

2) We locate the main culprit of the latency issue by
dissecting the network stack layer by layer, and find that
channel transmission time dominates the latency.

3) We quantify the performance improvement with regards
to transmission time reduction by using multiple network
interfaces. Our experiments cover both UDP and TCP.

4) We release our system codes, including kernel logging
functionality, the MPTCP patch (v0.93) to OpenWrt,
and data processing scripts at https://github.com/dtczhl/
dtc-openwrt.

II. BACKGROUND

In this section, we present a background of IEEE 802.11ac
and multiple-interface based transmissions.

A. IEEE 802.11ac

IEEE 802.11ac is the latest WiFi standard that operates
in the 5GHz band [10]. It supports wide bandwidth (up to
160MHz), a large number of spatial streams (up to 8) and
high-density modulation (e.g., 256-QAM).

We use the open source ath10k wireless driver for our
802.11ac WiFi modules. Ath10k is a WiFi driver for Qual-
comm Atheros QCA98xx based 802.11ac devices. Regarding

Fig. 1. Network stack from the perspective of Linux code structure

the driver as an independent layer in the network stack
simplifies the study of WiFi performance in Linux (see Figure
1). In fact, the code interface between mac80211 and ath10k
is similar to the interfaces between other layers (e.g., UDP
to IP, IP to mac80211). Specifically, the upper layer interacts
with the adjacent lower layer via the struct of operations that
is implemented by the lower layer.

In the packet transmission path, the mac80211 layer passes a
packet to the ath10k layer by calling the tx virtual function via
the interface of ieee80211 ops (.tx = ath10k mac op tx).
After obtaining the packet, the ath10k layer sends out the
packet in a back-off manner (refer to [14] for the details of
WiFi channel access). After receiving the acknowledgement
from the peer, the ath10k layer reports the status of the packet
to its upper layer via ath10k txrx tx unref function. As
a result, ath10k provides a couple useful information about
packet transmission: (1) the timestamp at which a packet enters
the ath10k layer for transmission (2) a status report for each
transmitted packet.

The reception path of ath10k is based on NAPI (stands
for New API), which is designed for high-speed networking
transmission. Compared to previous purely interrupt based
packet reception which creates thousands of interrupts per
second in a high-speed transmission, NAPI combines in-
terrupt and polling to effectively decrease system loads.
Ath10k delivers the packet to the upper layer by calling
ath10k htt rx handle amsdu function.

To the best of our knowledge, existing schedulers do not
consider these fine-grained information from the ath10k layer
to schedule packets among multiple networking interfaces. As
we show in Section V, the transmission-response delay of the
ath10k layer strongly correlates with latency, and thus ignoring
such information impairs the effectiveness of schedulers and
VR user experience.

B. Multiple Network Interfaces

An increasing number of devices have multiple network
interfaces [15]. For example, smartphones have cellular and
WiFi interfaces, and datacenter servers have multiple Ethernet
interfaces. This availability has motivated the use of multiple
network interfaces to increase throughput, reduce latency and
improve robustness. One of the most successful multiple-
interface transport protocol is Multipath TCP (MPTCP) [16],
which has been standardized at the IETF. Many MPTCP
schedulers have been proposed based on, e.g., lowest RTT
first (MinRTT), bulk data download time (DEMS [17]) and
fairness to other traffic flows [18].



Fig. 2. Networking setup

In this paper, we compare the performance of multiple-
interface based transmissions to the single-interface coun-
terpart. Different from existing systems with heterogeneous
interfaces, e.g., one cellular interface and one WiFi interface,
we focus on interfaces of same kind to study WiFi systems.
Specifically, each device in our setup is equipped with two
WiFi NICs of same model, both running 802.11ac.

III. METHODOLOGY AND SETUP

This section gives details about our measurement and data
collection setup.

A. Devices

We use two PC Engines apu2 boards [19] to run experi-
ments. An apu2 board has two MiniPCI interfaces. We use
them for 802.11ac modules. We attach a 64G SSD memory
to the mSata interface. An apu2 board has four 1GHz CPU
cores.

We install OpenWrt Operating System (OS) in the boards.
The OS that we use is based on Linux kernel 4.9.82, with
the wireless networking package of backports-2017-11-01. We
transplant MPTCP (v0.93) for the experiments with TCP over
multiple interfaces. Figure 2 shows the networking setup of the
two boards. We emulate one board as the VR server and the
other one as the VR client. Each device has two Qualcomm
Atheros QCA9888 802.11ac NICs (model: WLE650V5-18A).

B. Environment

Our experiments are conducted in a research lab at UC
Davis. The size of the lab is ∼6×10 meters. About five and two
Ph.D. students/candidates work in the lab during weekdays and
weekends respectively. We place the VR server and the VR
client ∼ 6m apart, without line-of-sight, but within one-hop
direct communication (i.e., no routing to other devices).

We fix the channel bandwidth of NICs to 80MHz dur-
ing our measurement. Unless otherwise mentioned, the two
interface pairs operate on non-overlapping channels: channel
36 (5.180GHz) and channel 149 (5.745GHz). To roughly
characterize the background interference, we detect the sur-
rounding WiFi SSIDs and find about 16 SSIDs in the 5GHz
band, in which zero SSID in the channel 36 and three SSIDs
in the channel 149.

C. Data logging

We add a 4-byte sequence number in the beginning of packet
payloads for packet identification. We record timestamps of
packets that are sent and received on the application layer,

and timestamps that packets entering and leaving each network
layer. However, the network stack does not have file system
support, which means we cannot log data from network stack
directly to files. To circumvent this data logging problem,
we use a memory based virtual file system called debugfs to
save data from network stack to memory and then format the
memory to files.

D. System Tuning

We fine-tune our system to support high throughput,
and then we conduct experiments on RTT and packet
loss. We set Type of Service (ToS) of IP packets to IP-
TOS THROUGHPUT. Both send and receive buffer sizes are
set to the maximum for avoiding packet loss. Unless otherwise
mentioned, other system configurations, e.g., maximum retry
times of wireless driver and the adaptive transmission power,
are remained to the defaults.

IV. WIFI AND VR REQUIREMENTS

VR applications pose unique challenges to networks with
regard to bandwidth, latency and packet loss. In this section,
we empirically examine whether IEEE 802.11ac supports these
requirements.

A. Throughput

Once the bandwidth, Modulation and Coding Scheme
(MCS), Number of Spatial Streams (NSS) and Guard Interval
(GI) are determined, the data rate of an 802.11ac device can
be found by looking up the data rate table (e.g., in [10]).
For example, we use WLE650V5-18A 802.11ac modules. This
WiFi module supports 80MHz bandwidth, two spatial streams
(NSS = 2), 256-QAM (MCS = 9) and short GI, and thus it
can provide up to 866.7Mb/s data rate.

The ath10k driver dynamically adjusts interface parameters
according to the channel conditions. It uses large MCS and
NSS for clean channels, and vice versa. We notice that it
occasionally changes bandwidth for a short duration as well,
from 80MHz to 40MHz or 20MHz. The driver stays on
short GI for our 802.11ac modules as far as we observe.
During our measurements, the ath10k driver reports data rate
of 195.0Mb/s to 866.7Mb/s, with MCS of 4 to 9, and NSS
of 1 to 2. The mean data rate reported is around 500Mb/s.

Since 802.11ac has already supported extremely high data
rate, the VR throughput requirement is not a reason of not
adopting WiFi transmissions. Specifically, the 802.11ac stan-
dard allows up to 6.9Gbps data rate [10]; the measurement
of a large-scale enterprise WiFi system (Cisco Meraki) shows
that some 802.11ac clients are already running in Gbps data
rates [11], which indicates that existing commercial WiFi
networks have already supported the throughput requirement
of Advanced-level VR.

B. Packet Loss

We fix the packet sending interval to 100ms and col-
lect more than 22 million UDP data points for 23 days
in a row, but no packet loss is observed. This may seem



counterintuitive since we use unreliable UDP transport layer
for this experiment. However, in our setting, the server and
the client communicate via one-hop link, and the default
system configurations (e.g., retry times of the wireless driver)
successfully delivers packets to its peer device.

C. Latency

To measure RTTs, we record two timestamps in the VR
server when a packet enters the UDP layer and when the
packet is received by the UDP layer. Please note that the RTTs
measured on the transport layer are smaller than the RTTs
from the application layer. We collect more than 20 million
data points. Although the median RTT is about 1.9ms for all
these days, the maximum delay is as high as 236ms, which
is intolerable for VR applications.

Considering that existing WiFi systems satisfy throughput
and packet loss of VR requirements, we focus on latency
analysis in the rest of this paper.

V. LATENCY ANALYSIS: SINGLE INTERFACE

In this section, we analyze the latency when using a
single 802.11ac interface. Specifically, we only enable the
192.168.21.0/24 subnet (refer to Figure 2).

Figure 3 depicts the RTTs from a one-day trace. The trace
contains 862650 UDP packets. We can see that RTT varies
significantly and some packets suffer very high delays. It also
illustrates the effect of background traffic on RTTs, as packets
from 13 : 00PM to 17 : 30PM tend to have higher delays;
there are more people in the research lab during these hours.

We plot the CDF of the RTT trace in Figure 4. We can
see that half of the packets have an RTT between 0.7ms
and 1.8ms. However, 0.04% packets have RTTs higher than
10ms with the maximum delay of 227.8ms. These high-delay
packets lead to poor user experience for VR applications.
Figure 5 shows the complementary CDF of the absolute jitter.
To ensure QoS for real-time multimedia applications, the delay
variation, i.e., jitter, should be less than 1ms [12], [13]. The
jitter distribution is spread over several orders of magnitude.
Although half of the packets have jitters less than 0.5ms, there
are 24.2% packets having jitter higher than 1ms and more
than 1% packets having jitters greater than 3.8ms, with the
maximum jitter of 226.9ms. The high delay and the high jitter
imply that WiFi systems cannot consistently guarantee the QoS
needed by real-time high data-rate VR applications.

To locate the root cause of the observed extreme high
latencies, we dissect the network stack layer by layer and
measure the packets’ stay time at each layer. Specifically, we
record for each packet, the time as it enters the UDP layer, IP
layer, mac80211 layer, and also when it is passed to the WiFi
driver for sending out and when the ACK is received from the
WiFi driver of the peer.

A. Delays from Upper Layers

Figure 6 shows the delays of packets going down from the
UDP layer to the IP layer. The delay is negligible, with the

minimum, median and maximum of 10µs, 16µs and 86µs, re-
spectively. Figure 7 shows the same for the packets going from
the IP layer to the mac80211 layer. The minimum, median
and maximum delay are 9µs, 16µs and 119µs, respectively.
We plot the delays of packets going down from mac80211
layer to ath10k driver in Figure 8. The processing is even
more lightweight compared to other layers. The minimum,
median and maximum are 5µs, 9µs and 48µs respectively.
Considering all the processing delays from upper layers, the
minimum, median and maximum delays are 23.9µs, 41.0µs
and 145.0µs, respectively.

B. Delays from Channel Transmission

We record the time difference between the timestamps
that a packet enters the ath10k driver layer until the driver
receives the acknowledgment from the WiFi driver of the peer.
We regard this time difference as channel transmission time
because it represents the time length that the driver needs
to deliver the packet to its peer over the wireless channel.
Figure 9 shows the channel transmission time. We have the
following observations: (1) The channel transmission time
dominates the RTT. The minimum, median, maximum delay
of the channel transmission are 0.3ms, 0.9ms and 127ms,
respectively. (2) As the background traffic increases, so are the
channel transmission delays. We can see that from 13:00PM
to 17:00PM when more people are working in the building,
the delays tend to be higher. (3) Comparing Figure 3 and
Figure 9, we can see that they have similar envelope. The
correlation coefficient between them is 0.71, which means that
the channel transmission time is a good indicator of the RTT.
We further plot the CDF of the channel transmission time in
Figure 10 and have an additional observation: (4) The channel
transmission time follows multiple uniform distribution. We
manually add inflection points to segment the CDF curve. Each
curve segment exhibits very good linearity. This observation is
consistent with the behavior of the exponential-based backoff
algorithm.

C. Packet Analysis on Receiver’s Side

Since the channel transmission time is correlated with RTTs,
we expect it to correlate with the packet reception as well. We
plot the jitter in packet reception in Figure 11. The jitters are
mostly symmetric along the y-axis in that the jitters from two
adjacent packets tend to cancel each other. Comparing Figure
11 with Figure 9, we can see that they have similar envelopes.
The correlation coefficient between them is 0.62. Therefore,
channel transmission time is also a good indicator for the jitters
of packet reception.

D. Summary of Single-Interface WiFi Transmission

We highlight some findings from the measurement analysis
on single-interface WiFi transmissions.

1) Single-interface based WiFi transmissions cannot ade-
quately support VR applications because of the outlier
RTTs (as high as 227.8ms) and the jitters (24.2%
packets have jitter higher than 1ms).



Fig. 3. One day trace of RTT using single interface

Fig. 4. CDF of the RTT using single interface

Fig. 5. Complementary CDF of the jitter using single interface

Fig. 6. Delays of packets going down from UDP layer to IP layer

Fig. 7. Delays of packets going down from IP layer to mac80211 layer

2) The channel transmission time accounts for the high
and variant RTTs. Compared to upper layers combined,
delays from channel transmission time is about 22 times

Fig. 8. Delays of packets going down from mac80211 layer to ath10k driver

Fig. 9. Channel transmission time using single interface

Fig. 10. CDF of channel transmission time

Fig. 11. Packet reception jitter on the receiver side

in the median delay case and 876 times in the maximum
delay case.

3) The channel transmission time is closely correlated



with the RTTs (correlation coefficient: 0.71) and the
packet reception jitters on receivers (correlation coef-
ficient: 0.62). Therefore, incorporating the information
of channel transmission time in packet schedulers have
the potential to improve efficiency, especially for packet
scheduling among multiple interfaces.

VI. LATENCY ANALYSIS: MULTIPLE INTERFACES

To reduce the channel transmission time of packets, we
propose using multiple interfaces running on non-overlapping
channels. The reasoning is straightforward yet effective: the
chances of accessing the wireless channel is higher when
multiple interfaces are available than a single interface.

For the experiments with multiple interfaces, we enable both
subnets (refer to Figure 2). We consider the simple yet optimal
packet scheduling strategy: each packet is duplicated to both
interfaces. This scheduling strategy is optimal with regard to
packet latency reduction because the receiver receives the ear-
lier packet between the two interfaces. We record timestamps
on user-space, and disable the kernel logging functionality. Our
main focus is on the performance improvement of multiple
interfaces compared to a single interface.

A. UDP Improvement
We analyze a one-day trace that includes more than 800K

UDP data points.
1) Round-Trip Delays Improvement: Figure 12 shows the

RTTs for interface 1, interface 2 and the combined interface.
Because interface 1 and interface 2 run on non-overlapping
channels, their RTTs are expected not to be strongly correlated.
This is confirmed by the bottom figure in which the combined
interface has much smaller and smoother RTTs than individual
interfaces.

Figure 13 plots the complementary CDFs for the RTTs.
The median RTT is 2.8ms and 3.0ms for interface 1 and
2 respectively. In comparison, the combined interface reduces
the median RTT to 2.0ms, achieving 28.6% RTT reduction
compared to the best single interface (i.e., interface 1). In
addition, the combined interface has shorter tail than individual
interfaces. For example, considering the worst 90% to 99%
packets, the combined interface has an RTT range of 2.8ms
(3.8ms− 6.6ms), whereas interface 1 and 2 spans for 3.6ms
(4.9ms−8.5ms) and 11.2ms (6.0ms−17.2ms), respectively.

2) Jitter Improvement: Figure 14 plots the complementary
CDFs for the jitter when the packets are sent back to the
sender. The combined interface effectively reduces the per-
centages of jitters higher than 1ms by 11.5% and 18.11%
compare to interface 1 and interface 2, respectively. The jitter
is worse than the data shown in Figure 5, because we collect
data on application layer in multiple-interface experiments.

Figure 15 shows the one-way jitter from the sender to the
receiver. The narrower the PDF is, the less variation of the
packet reception. As we can see, the combined interface is
centered around 100ms which is the packet sending intervals.
Take the best 90% packets for example: the width for the
combined interface is 1.84ms, whereas it is 4.31ms and
7.38ms for interface 1 and interface 2, respectively.

B. TCP Improvement

We transplant MPTCP (v0.93) into OpenWrt and con-
duct experiments to explore the performance gain of TCP
communication using multiple homogeneous WiFi interfaces
versus the single-interface counterpart. We set the scheduler of
MPTCP to redundant in which data are sent on all available
subflows and thus results in lowest possible latency. More than
100K TCP data points are collected.

Figure 16 depicts the median RTTs, and the 5% and 95%
percentiles. The median RTT is improved from 1.8ms to
1.1ms, achieving 38.9% RTT reduction. It is interesting to
note that TCP witnesses a higher RTT reduction than UDP
(28.6%). Using multiple interfaces for TCP communications
also greatly reduces packets that suffer from high RTT. The
95% percentiles are improved from 4.1ms in single-interface
case to 1.9ms in multiple-interface case, achieving as large
as 53.7% reduction. The 5% percentile is 1.0ms and 0.8ms
respectively, which achieves 20.0% improvement in multiple-
interface data transmission. Compared to UDP, TCP benefits
more from multiple-interface transmission.

C. Channel Correlations

The benefits of using multiple interfaces rely on the used
channels being independent so that the combined interface has
smaller and smoother RTTs. We change the channels of the
two NICs to measure the correlation between channels. We
also change the packet transmission interval from 100ms to
10ms and collect 10-minute’s data for each channel pair. This
is important for capturing short-lived correlations. In the US,
the unlicensed 5G band supports six 80MHz channels [11].
Figure 17 shows the channel correlation for two experiment
runs. The interfaces fail to work when both operate in same
channels (i.e., diagonal numbers in the figure), and we put 1
for illustration purposes. We can see that different channels
have different correlations. Even for the same channel pairs,
the correlation changes for different days. The irregularity
indicates that channel selection for multiple interfaces is not
as simple as it seems.

D. Summary of Multiple-Interface WiFi Transmission

Multiple-interface based WiFi transmissions effectively re-
duce RTTs and jitters. To benchmark the performance im-
provement of multiple-interface transmission, we duplicate
packets among all available flows/channels. From our experi-
ments in which each device has two interfaces, the combined
interface reduces the RTT of UDP packets by 28.6% and the
jitters of higher than 1ms by 11.5% compared to the best
single interface. The experiments with TCP show that TCP
packets witness even higher round-trip delay improvement
than UDP, achieving 38.9% median delay reduction. Although
the combined interface still has a few high-delay packets, the
number of outlier packets is largely reduced. We anticipate that
by incorporating more interfaces (e.g., 3 or 4) and adaptive
multipath algorithms, the WiFi system could further reduce
RTTs and jitters and thus fully support VR applications.



Fig. 12. Round-trip delays for multiple interfaces. Top to bottom: interface 1, interface 2 and the combined interface

Fig. 13. CCDF for the UDP round-trip delays using multiple interfaces

Fig. 14. CCDF for the UDP jitters using multiple interfaces

Fig. 15. PDF for UDP jitters on the receiver using multiple interfaces

VII. RELATED WORK

We cover the related work with regards to the VR transmis-
sion systems and WiFi measurements.

Fig. 16. The median, 5% and 95% percentiles of RTTs for single-interface
and multiple-interface TCP packet transmissions

(a) Experiment one (b) Expriment two

Fig. 17. Channel correlations

A. VR Transmission Support

Current VR devices rely on wire-line transmissions which
have inherent disadvantages, such as terrible user experience
and potential safety issues. 60GHz techniques (e.g., IEEE
802.11ad) are promising to provide wireless transmissions
of high throughput and low latency. However, due to the
narrow beams and high signal attenuation, 60GHz cannot
perform well during mobility and blockage [6], [20] which are
unavoidable for VR interactions. Abari et. al built a system
that uses reflectors to reroute around blockages [3]. While this
solution can help mitigate blockages, it involves deploying
extra components, i.e., reflectors. Further, reflectors placement



is dependent on room geometry and layout. Hybrid systems
have been proposed to leverage multiple network interfaces
on devices [6], [7], [21]. However, because of the high
heterogeneous links, the overall performance can be worse
than a single link [6]–[8], complicating system designs and
wasting networking resources. VR support in LTE networks is
studied in [22]. This paper takes a closer look at whether pure
WiFi systems can be engineered to support VR applications.

B. WiFi Measurements

There are a plethora of works on WiFi performance analysis,
including system measuring [11], [23], pathology detection
[14] and interference deconstruction [24]. Most of existing
works on studying commercial WiFi systems either rely on
higher-layer system logging data [14] or closely-placed WiFi
NICs as sniffers [25]. This paper substitutes to existing WiFi
measurement works in that we provide fine-grain analysis
(by directly dissecting network stack) of the latest WiFi
standard (i.e., IEEE 802.11ac) and also we explore multiple
network interfaces to mitigate the latency issue of pure WiFi
transmissions.

VIII. FUTURE WORK

The long-term goal of our project is to build a purely WiFi
based transmission systems for VR applications, including
but not limited to 360 VR videos. We believe that using
multiple NICs is the right direction for building extremely
high throughput, low latency and robust WiFi networks.

More WiFi NICs. We plan to explore the performance limit
that a WiFi system can provide by using a large number of
WiFi NICs running on non-overlapping channels. In the US,
for example, the unlicensed 5G band supports six 80MHz
channels [11]. Therefore, a WiFi system can use six 80MHz-
NICs without interfering to each other.

Multiple Interface Scheduling. In this paper, we duplicate
packets among all available channels to explore the perfor-
mance limit of purely WiFi based VR solutions. In practice,
the benefits of using multiple WiFi NICs cannot be fully
leveraged without an effective multiple-interface packet sched-
uler. Existing schedulers are designed for general network
interfaces, which are not optimal for purely WiFi systems
since they do not consider the variation of wireless channel
transmission delays.

IX. CONCLUSION

In this paper, we investigate whether purely Wi-Fi based
transmission systems can support VR applications. By pre-
liminary measurements, we find that high delays and jitters
make single-interface WiFi inadequate. By dissecting network
stack layer by layer, we locate the main culprit, i.e., wireless
channel transmission time. Based on the findings, we propose
to use multiple interfaces to reduce channel transmission time.
To explore performance limit of multiple interface transmis-
sion, we duplicate packets among all available channels. The
measurement results show that our multiple-interface system
is effective in mitigating the latency. We believe that using

multiple interfaces is the right direction to make WiFi systems
fully support VR applications.

REFERENCES

[1] Andrew Meola. Facebook plans to ship a mind-blowing number of
oculus rift units in the next two years. Technical report, Business
Insider, 2016. http://www.businessinsider.com/facebook-expects-to-ship-
26-million-oculus-rifts-by-2017-2016-4.

[2] Huawei. Whitepaper on the VR-oriented bearer network requirement
(2016). Technical report, Huawei Technologies, 2016.

[3] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina Katabi. En-
abling high-quality untethered virtual reality. In USENIX NSDI, 2017.

[4] Tpcast. https://www.tpcastvr.com/product. Accessed: 2018.
[5] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong

Zhang, Lintao Zhang, and Marco Gruteser. Cutting the cord: Designing
a high-quality untethered VR system with low latency remote rendering.
In ACM MobiSys, 2018.

[6] Sanjib Sur, Loannis Pefkianakis, Xinyu Zhang, and Kyu-Han Kim. Wifi-
assisted 60 ghz wireless networks. In ACM MobiCom, 2017.

[7] Swetank Kumar Saha, Roshan Shyamsunder, Naveen Muralidhar
Prakash, Hany Assasa, Adrian Loch Dimitrios Koutsonikolas, and Joerg
Widmer. Poster: Can mptcp improve performance for dual-band 60
ghz/5 ghz clients. In ACM MobiCom, 2017.

[8] Yung-Chin Chen, Yeon sup Lim, Richard J. Gibbens, Erich M. Nahum,
Ramin Khalili, and Don Towsley. A measurement-based study of
multipath TCP performance over wireless networks. In ACM IMC, 2013.

[9] Marketsandmakets. Gobal wi-fi market worth 33.6
billion usd by 2020. Technical report, 2015.
https://www.marketsandmarkets.com/PressReleases/global-wi-fi.asp.

[10] 802.11ac-2013 part 11: Wireless lan medium access control (MAC) and
physical layer (PHY) specifications. Standard, IEEE, 2013.

[11] Apurv Bhartia, Bo Chen, Feng Wang, Derrick Pallas, Raluca Musaloiu-
E, Ted Tsung-Te Lai, and Hao Ma. Measurement-based, practical
techniques to improve 802.11ac performance. In ACM IMC, 2017.

[12] Hongqiang Zhai, Xiang Chen, and Yuguang Fang. How well can the
ieee 802.11 wireless lan support quality of service. IEEE Transactions
on Wireless Communications, 4(6):1536–1276, 2005.

[13] ITU G.1010. End-user multimedia qos categories. Technical report,
ITU, 2001.

[14] Partha Kanuparthy, Constantine Dovrolis, Konstantina Papagiannaki,
Srinivasan Seshan, and Peter Steenkiste. Can user-level probing detect
and diagnose common home-WLAN pathologies? ACM SIGCOMM
Computer Communication Review, 42(1):7–15, 2012.

[15] Juan Antonio Cordero. Multi-path tcp performance evaluation in dual-
homed (wired/wireless) devices. Journal of Network and Computer
Applications, 70:131–139, 2016.

[16] Mptcp. https://www.multipath-tcp.org. Accessed: 2018.
[17] Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng Qian, and

Subhabrata Sen. Accelerating multipath transport through balanced
subflow completion. In ACM MobiCom, 2017.

[18] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Hand-
ley. Design, implementation and evaluation of congestion control for
multipath tcp. In USENIX NSDI, 2011.

[19] Pc engines apu2 platform. https://www.pcengines.ch/apu2.htm. Ac-
cessed: 2018.

[20] Teng Wei and Xinyu Zhang. Pose information assisted 60 ghz networks:
Towards seamless coverage and mobility support. In ACM MobiCom,
2017.

[21] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z. Morley Mao, and Sub-
habrata Sen. An in-depth understanding of multipath tcp on mobile
devices: Measuring and system design. In ACM MobiCom, 2016.

[22] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan Li, and
Songwu Lu. Supporting mobile VR in LTE networks: How close are
we? In ACM SIGMETRICS, 2018.

[23] Domenico Giustiniano, David Malone, Douglas J. Leith, and Kon-
stantina Papagiannaki. Measuring transmission opportunities in 802.11
links. IEEE/ACM Transactions on Networking, 18:1516–1529, 2010.

[24] Shravan Rayanchu, Ashish Patro, and Suman Banerjee. Catching whales
and minnows using wifinet: Deconstructing non-wifi interference using
wifi hardware. In USENIX NSDI, 2012.

[25] Anmol Sheth, Christian Doerr, Dirk Grunwald, Richard Han, and
Douglas Sicker. Mojo: A distributed physical layer anomaly detection
system for 802.11 WLANs. In ACM MobiSys, 2006.


