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ABSTRACT

In order to use and manage IoT devices, a prerequisite is to on-
board them so that they can be initialized and connected to the
infrastructure. This requires mapping each physical device with its
digital identity. Doing so manually is tedious, error-prone and not
scalable. In this paper, we propose AIDE, a mechanism that pro-
vides Augmented onboarding of IoT Devices at Ease. AIDE offers
a streamlined on-boarding process by automatically associating
devices at different locations with their corresponding Received
Signal Strength (RSS) profiles, which can be applied to a wide range
of wireless technologies such as WiFi, BLE and Zigbee. AIDE does
not require additional infrastructure or hardware support, and can
work by simply using a COTS smartphone as receiver. The mecha-
nism employs a carefully designed measurement approach and a
post-processing algorithm to mitigate multi-path effect and improve
measurement accuracy. Preliminary experiments in different indoor
environments show that AIDE achieves about 90% on-boarding ac-
curacy when devices are 6 feet away from the measurement point,
and 100% accuracy when devices are directly approachable.
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1 INTRODUCTION

The Internet of Things (IoT) continue to expand its reach into
homes, industry, hospitals, and other environments, as more and
more devices are connected with the purpose of gathering and
sharing data. Apart from the convenience aspect, there are several
potential benefits of IoT that can lead to increased energy efficiency,
improved safety and security, and higher product quality. However,
to achieve the benefits of IoT devices, it is critical to have an efficient
on-boarding process that can initialize and provision the devices
for accessing the network infrastructure. Unfortunately, often the
process to on-board IoT devices is time consuming and labor inten-
sive, which becomes the barrier to streamlined IoT adoption and
deployment [1]. Furthermore, the complexity of deploying large
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number of devices may also increase the vulnerability and security
risk of the infrastructure.

To better understand the limitation of the current manual on-
boarding process, consider a scenario where an enterprise has ac-
quired many smart light bulbs and installed them on ceiling, wall
or floor. These devices can be controlled through wireless com-
munication such as BLE, WiFi and Zigbee. But before the system
administrator or operator can operate these light bulbs, s(he) needs
to know the device ID (MAC address or physical address) of each
light bulb. Note that although the human-readable manufacturer
names may be contained in the beacon packet, these names can
only help to separate different types of devices (e.g. light bulbs vs.
thermostats), or devices from different manufacturers. It is difficult
to know (physically) which light bulb has which device ID just
based on beacon packets in the case where all light bulbs are from
the same manufacturer. To on-board these light bulbs manually, the
operator may either try to find the MAC address on the original
package of each device and enter them into the system one by one,
or s(he) can try to onboard each light bulb one at a time, and turn it
on/off and try to verify which device is under control. We can see
that such manual on-boarding process is very tedious and error-
prone, and can be very inefficient when the number of devices is
large. In addition, for devices that do not give visual feedback about
its operational status, e.g., sensors that do not show on/off status,
it can be difficult to verify their device IDs without testing each of
them in isolation.

In order to on-board IoT devices at large numbers, we need a
streamlined mechanism to register each device to the infrastructure
based on its unique digital identity (i.e., MAC or physical address). In
addition to seamless registration, it is also essential to know, which
digital identity corresponds to which physical device. Knowing this
information enhances usability [2] and safety [1] in interacting
with the surrounding IoT devices. In this paper, we refer to such
methodology as augmented on-boarding.

Our basic idea is to differentiate the seemingly identical devices
based on their Received Signal Strength (RSS) values. In a deployed
environment, devices are typically separated from each other by a
certain distance. For example, light bulbs may be installed on ceiling
with several feet in between. Similarly, hand held devices can be
separated from each other by moving them apart. Hence when we
measure the RSS values of different devices, generally we should
be able to find some difference in their signal strength due to their
location differences. Note that RSS is available in almost all COTS
receivers regardless of what wireless communication technology is
used, e.g., WiFi, BLE and Zigbee, which makes RSS-based solution
IoT-protocol independent.

One naive solution to identify a target device is to measure the
RSS values by holding a smart phone closest to this device and then
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identify this device as the one with the highest RSS value. However,
there are a number of challenges that make such naive solution
not working well. First, RSS value drops exponentially with the
increase in distance, which makes it difficult to reliably compare
two signals beyond a certain distance range. Therefore, in order to
create reliable RSS contrast, we need to conduct measurement at
the close proximity of the target device. However, in many cases,
due to physical constraint (e.g., devices on ceiling) or obstruction
(e.g., furniture on the way), target devices may not be approachable.
Furthermore, RSS measurements are affected significantly by the
multi-path effect. A slight change in location or direction may cause
significant changes in measurement results. To further complicate
the matter, RSS values vary significantly across devices. Even for
the same type of devices, their RSS values vary due to other factors
such as battery levels or age.

Due to above signal and physical constraints, the naive approach
of selecting maximum RSS measurement to identify devices shows
only ~ 65% accuracy in our experiments. In this paper, we pro-
pose AIDE, a more carefully designed measurement approach that
systematically samples across multiple locations, and then use a
voting-based algorithm to process the RSS measurement results for
different devices at different locations to infer the device identities.
Through preliminary experiments in several different indoor envi-
ronments, we find that our solution can significantly improve the
measurement accuracy over the naive approach. In the case that the
target device is directly reachable, we can achieve 100% accuracy. In
the case, the target devices are installed on ceiling and not directly
reachable, we can achieve about 90% accuracy. However, in order
to make augmented on-boarding applicable in practical settings we
need near perfect accuracy. As our first steps towards that goal,
AIDE shows promising results in our evaluation.

2 USE-CASE SCENARIOS

Large-Scale Device Onboarding for Industry: IoT devices have
been increasingly adopted by industries for many different applica-
tions. In the introduction we have shown one such example, where
an enterprise that deploys smart light bulbs can use our solution to
streamline on-boarding process. In addition, consider a retail store
that uses IoT to improve the shopping experience, e.g., sending
beacon alerts to customers or using smart shelves to show prod-
uct information [4, 5]. This requires a large number of IoT devices
deployed at various locations of the store. When such devices are
initially deployed, they need to be registered in the system, so that
correct device ID to location mapping can be established. In order to
do so, the current de-facto process is to either enter each device ID
into the system manually, if this can be found from device’s original
package; or through a trial-and-error process where the operator
can try to connect to each device one-by-one, change its status (e.g.
turn them off or change light color), and then observe which device
is changed and hence make the association. However, such manual
process may be error-prone and inefficient. Instead, if we use the
proposed AIDE mechanism, the store operator can simply use a
phone to do device’s beacon measurement close to the shelf where
each device is installed. Then after all the measurement is done, the
AIDE app that runs on the smart phone will automatically associate
all device IDs with their corresponding shelf locations.

Inventory Management in Hospitals: Our on-boarding solu-
tion can be used in managing day-to-day inventory in the medical
sector. Consider a scenario, where a patient is admitted to an emer-
gency care. In this environment, for efficient utilization of space
and easy movement of the physicians, often patients are assigned
to hospital beds that are close to each other, separated only by cur-
tains (i.e., vertical treatment room [3]). Once a patient is admitted,
(s)he wears a wrist band with bar-code that represents the identity
of that patient. This identity is used by the hospital to maintain
the record about the patient. Now assume that the hospital has an
inventory of BLE heart-rate monitoring devices. Since these devices
are typically acquired in batches, many of them are from the same
manufacturing companies and have the same model numbers. One
of the heart-rate monitors will be attached to the patient after (s)he
is admitted. The de facto process requires to first register all devices
in the inventory manually by entering their MAC addresses and
serial numbers etc. into the database, and also attach a printed label
with its unique ID to this device. Then when the device is assigned
to the patient, again manually associate the device label with the
patient’s record. In this way, the hospital can monitor the patient
status and at the same time keep record of their inventory. However,
such manual process may be error-prone and inefficient. Instead, if
we use the proposed AIDE mechanism,the physician or nurse can
simply hold a smart phone close to the heart-rate monitor, and the
AIDE app that runs on the smart phone will automatically identify
the device based on its beacon signal, despite having other beacon
signals from similar heart-rate monitoring devices of nearby pa-
tients. Later this device identity can be associated with the patent’s
record. Although the hospital environment requires stringent 100%
accuracy, we have seen promising results from our experiments that
this may be achievable when the devices are directly approachable.
Interactive Indoor Map: In an enterprise environment such as
an office building, we may be surrounded by a large number of
smart devices and appliances. As the usage of these devices grows,
it becomes important for the employees to be able to interact with
these devices seamlessly. One way to enable such interaction is
to use a smart phone app with an interactive indoor map of the
building [2], where the IoT devices are marked on the map. Users
can then click on the devices on the map to control them. In this
scenario, it is important to have a streamlined process to on-board
all such devices whenever they are installed and replaced. If this is
done manually, one would have to try to connect and control each
device one by one and try to assign device IDs on the map. With
AIDE, one can instead use a smart phone to collect measurement
data at the proximity of each device for a few seconds, and then
the algorithm will automatically assign all device IDs on the map
in one shot. In this usage scenario, AIDE can help to associate the
physical device to its beacon and MAC address.

3 CHALLENGES

In the proposed on-boarding solution, we passively measure RSS
from the wireless communication of surrounding devices. Unlike
many other metrics such as CSI and AoA, RSS is considered as the
most generic and easily accessible measurement metric. In that re-
gard, any COTS mobile device that is compatible with IoT wireless
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Figure 1: Signal constraint. (a) Flat RSS beyond some dis-
tance; (b) Noisy RSS due to multipath effect

communication protocol can be used as a receiver for our measure-
ment. Thus, without any modification (software and hardware) in
the already deployed IoT devices, and without any infrastructure
support (e.g., access points), we can use any COTS smartphone for
our on-boarding solution. Despite the practicality of RSS measure-
ment, there are a number of challenges due to the characteristics
of signals, and the physical settings at indoor environment.

RSS measurement can vary due to a number of reasons that
include transmission power, distance, multi-path effect, etc. In the
following list, we describe different challenges that we face for
varying nature of RSS measurement and the complex layouts of
indoor structure.

(1) Different devices have different transmission powers. As-
sume, we have two devices of same type (device ‘A’ and ‘B’)
side-by-side, and their transmission powers differ because
one has (device ‘A’) higher battery capacity than the other
(device ‘B’). Note that, increase of transmission power in-
creases the RSS value of the received signal. Given the close
proximity of device A’ and ‘B’, even if we measure RSS of
both devices at the position of device ‘B’, we may see higher
absolute RSS value of device ‘A’ compared to device ‘B’. Thus
we cannot rely on absolute RSS value to infer the proximity
of devices.

(2) Beyond certain distance, change in RSS is indistinguishable.
Figure 1(a) shows a trace (collected outdoor at open-space on
top of Crowford Hill, NJ) in which the RSS does not decrease
much beyond ~ 50 inches. Therefore, measuring RSS in close
proximity helps in distinguishing target devices. However, it
may not always be possible to get close to the target devices
or devices may not be approachable. For example, if devices
are deployed on ceiling, we cannot get very close to the target
devices. In these circumstances, it is challenging to use RSS
to distinguish target devices from distance, especially when
the target devices are close to each other. In other words, it
is more difficult to create sufficient contrast in RSS values of
target devices to distinguish them when the measurements
are conducted farther away from the devices.

(3) RSS data at indoor environment is noisy because of multi-
path effect. Figure 1(b) shows a trace of RSS when we walk
with a receiver directly toward a transmitter located at 80
inches away. Although the RSS increase is the general trend,
the data fluctuates significantly. Due to the multi-path effect,
measuring at larger distance may show higher RSS value
compared to a shorter distance from the target device. There-
fore, without proper techniques to combat multipath effect,
the accuracy of onboarding based on RSS may degrade.
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Figure 2: To mitigate multipath effect, we move our phone
in a circle way as (a) shows. (b) and (c) plot one trace with
and without local movement respectively

4 PROPOSED SOLUTION

Before describing the proposed solution, we first present the RSS
measurement technique in mitigating multi-path effect. Second, we
describe the RSS measuring procedure, and finally we describe the
algorithm to identify devices. By putting them together, we propose
an augmented on-boarding solution, AIDE.

4.1 Mitigating Multipath Effect

In Figure 1(b), we see how multi-path can have both constructive
(multi-path components are in phase) and destructive (multi-path
components are out of phase) interference effect on RSS measure-
ment. In such phenomenon, for constructive case we see relatively
higher RSS value, and relatively lower RSS value for destructive
case. Therefore, instead of fixing the phone, we move our phone
in a circular way (i.e., local movement) when we collect RSS data
as Figure 2(a) shows. By doing this, we average RSS (spatially)
within a small region, and thus we mitigate the multi-path effect in
our measurement. Note that the radius of the circular movement
has to be at least 2.5 inches, which is half of the wavelength (i.e.,
A=c/f =3%x103/2.4x10° meters =~ 2.5 inch). Thus, we can have
measuremnt across full wavelength. To show the effectiveness of
our local movement method, we measure RSS at different distances
from a transmitter, and average RSS data at each location. Figure
2(b) and Figure 2(c) plot the results with and without local move-
ment, respectively. They clearly show that our local movement
method results in a smoother and more consistent RSS curve over
distance.

4.2 Measuring Procedure

Figure 3 depicts our measuring procedure. In this example, we
want to on-board device IDs of three light bulbs on the ceiling. To
on-board these devices, we collect RSS from all three light bulbs
at fixed-locations, called measurement locations. There are three
constraints in selecting a measurement location: First, each mea-
surement location corresponds to a target device, whose device
ID we are interested in finding. Therefore, in Figure 3, we have
three measurement locations for three target devices. Second, a
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Figure 3: Measuring procedure in AIDE. We measure RSS at
fixed positions closest to each target device. At each mea-
surement location, we move our phone in a circular way
when collecting RSS

measurement location of a target device is the position that is clos-
est to that device compared to the other target devices. Third, a
measurement location should be as close as possible to the target
device. For example, in Figure 3, the measurement location 1
is the closest one (right below) to light bulb 1 compared to the
left-most measurement location 1’.Hence location 1 should
be used even though both locations satisfy the second constraint.
This third constraint allows us to avoid the flat-like RSS region
from Figure 1(a), and to have enough RSS contrast among multiple
target devices.

For approachable case, a measurement location can be at the
position of the target device, where as, for unapproachable case, a
measurement location can be as close as possible to the target device.
For example, as shown in Figure 3, the measurement location for
light bulb 1 on ceiling (target device), which is unapproachable, is
right below at measurment location 1. At each measurement location,
we collect RSS of surrounding devices, both target and non-target,
for a few seconds. Here non-target devices are the set of devices
that the user is not interested in on-boarding or devices that may
not be visually present (e.g., devices deployed in other rooms). Note
that here we only focus on devices that are seemingly identical (e.g.,
same type and from same manufacturer). Devices of different types
can be differentiated based on their device ID structure (i.e., MAC
address) and device’s name extracted from the beacon message.
Furthermore, we also filtered out the already on-boarded devices
from our measurement using their device IDs. After collecting the
data, we derive statistical metric (i.e., mean, median, 95 percentile
(close to maximum) and 5 percentile (close to minimum)) for each
device or device ID to build RSS profile. Once we build the profiles
for all device IDs, we apply our device identification algorithm to
map the device ID to each measurement location, which physically
represents a target device.

4.3 Identification Algorithms

Problem Formulation: For better understanding, let’s first formu-
late the problem before describing the algorithms. Assume, we have
N measurement locations for N target devices. For each measure-
ment location, we have RSS profile for M number of device IDs that
include both the target and the non-target devices (M > N). Corre-
spondingly, we have an M-by-N matrix D, in which d;; represents
the RSS profile of ith (i=1,2,...,M)device ID atjth (G=12,..,N)
measurement location.

din  diz ... diN
dMl dMZ P dMN

Given the RSS profile matrix D, our objective is to associate the
right device ID i for the measurement location j. Before describing
the proposed algorithm, we describe two intuitive algorithms. Later,
in evaluation, we compare these two algorithms with our propose
algorithm.

Naive Algorithm. For each measurement location, this algo-
rithm selects the device ID that has the strongest RSS. The outcome
of this algorithm may vary due to the different transmission powers
of different devices.

Greedy Algorithm. This algorithm improves on Naive Algo-
rithm. It first finds the largest RSS in D, say RSS d;;. Then it assigns
measurement location j with device ID i. Afterwards, the row i and
column j in D is set to —co. The procedure repeats N times until
N devices at N measurement locations are identified. Compared
to Naive Algorithm that considers a measurement location to be
independent of other measurement locations, this algorithm starts
with the largest RSS (normally higher confidence) and also avoids
assigning same Device ID to multiple measurement locations.

Voting-based Algorithm: We propose a voting-based algo-
rithm to consider the likelihood of each device ID at each mea-
surement location. Each device i receives a vote for location j,
reflecting its likelihood of being at location j. The vote is calculated
as Zszl(dij — dj). This is derived by comparing device i’s RSS at
location j with other locations. A higher vote for device i at location
J means that device i has greater signal strength at location j com-
pared to that at other locations. Since each device only compares
its signal strength at different locations, the vote is not affected by
the difference of transmission powers between devices. Also note
that the vote is jointly determined by measurement result from all
locations, which makes the result more robust than the result of
the greedy algorithm where a single RSS value is used.

ijil(dn - dyj)
Zj]\il(dZI — dyj)

ijil(le —dyj)

V= Zj\il(dzN - de) (2)

SN w1 = duj) SN (dmn = dwm))

Based on the vote matrix V, we search for the largest vote sum-
mation of N elements in V. These N elements are from unique
devices (i.e., different rows) and unique measurement locations
(i.e., different columns). Currently, we use a brute-force method,
in which we traverse every combination of N devices out of M
devices, and for those N devices we traverse every combination of
N measurement locations. The result is given by the combination
(device-wise and location-wise) that has the largest summation. The
complexity of the brute-force algorithm is exponential. We plan to
explore heuristic algorithms that have polynomial complexity.

4.4 Putting All Together: AIDE

Figure 4 shows a visual prototype of using AIDE in smartphone
system that associates the visual objects (images or icons) with
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received device IDs. During the data collection phase, a user clicks
a device object on screen and collects RSS at a position close to that
device. The user repeats this procedure for all devices to on-board.
Afterwards, AIDE automatically binds each visual object with its
corresponding device ID. Then the user can control these devices,
e.g., setting the brightness level of a light bulb. Note that in general,
the system needs to (1) associate the physical device to its device
ID, and (2) associate the physical device to its visual representation
(e.g. image or icon) in the app. The mechanism we presented so
far focuses on Step (1). In this simple prototype, Step (2) is done by
requiring the user to click on the device image while measuring
this device. This can also be done automatically by relying on the
phone’s camera to recognize and track the devices using machine
learning [6], which we plan to investigate as part of our future
work.

5 EVALUATION

For evaluation, we conduct preliminary experiments using BLE
devices. However, AIDE supports other wireless communications
such as WiFi and Zigbee because it only requires RSS information.

5.1 Experimental Setup

We deploy BLE devices at three sites: a small meeting room, a
medium conference room and an office corridor. Devices are placed
at various locations, some not directly approachable, e.g., on ceil-
ing, some approachable, e.g., on table or floor. We create different
topologies on the ceiling including line, grid and random, and also
consider the scenario with mixed target and non-target devices.
We implement the measurement app using a Google Pixel 2 smart-
phone. At each measurement location, we collect RSS data for 30
seconds, and use the mean, median, 95 percentile, or 5 percentile
value. For better usability of AIDE, it is important to reduce the
time of data collection. However, reducing the duration of collec-
tion time may affect the accuracy of measurement, especially when
the distance between measurement locations and devices are large.
As part of the future work, we are exploring this tradeoff.

5.2 Accuracy Versus Device Distance

In this evaluation, we investigate the impact of distance between
devices on measurement accuracy when the devices are not ap-
proachable (i.e. on the ceiling). Here we use a pair of devices, with
distance of either 2 feet or 4 feet in between. The phone is placed 6
feet below the measured device. Thus, the maximum difference of
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Figure 5: Accuracy of onbarding two devices on ceiling.
AIDE achieves 93.4% and 97.1% in 2 feet case and 4 feet case
respectively

distances between the pair of devices and the phone is only 0.3 feet
(for 2 feet case) and 1.2 feet (for 4 feet case), respectively.

Figure 5 shows the overall accuracy comparison between naive,
greedy and our voting-based algorithms. It clearly shows that
voting-based algorithm outperforms the greedy algorithm which
in turn outperforms the naive algorithm. The voting-based algo-
rithm consistently achieves high accuracy using the Mean metric,
with 93.4% and 97.1% accuracy in 2 feet and 4 feet device distance
respectively. Given the fixed distance between the measurement
location and the target device, we see the accuracy increases with
the increase of distance between neighboring target devices. In the
rest of evaluation, we use Mean in our algorithm, and compare to
the other algorithms with whichever metric (e.g., 5 percentile) gives
its highest accuracy.

5.3 Devices in Different Topology

We deploy multiple devices on ceiling to form two different topolo-
gies to study the accuracy. i) Line Topology: Where we deploy
4 devices in a line at different indoor environments. The distance
between neighboring devices is 2 feet and thus the maximum dif-
ference of distance between neighboring devices to the phone is
0.3 feet. ii) Grid Topology: Where we deploy 6 devices into a 2-
by-3 grid on ceiling in the medium conference room. The distance
between neighboring devices is 4 feet and thus the maximum dif-
ference of distance between neighboring devices to the phone is
1.2 feet. Again the phone is placed 6 feet below the ceiling.

Table 1 tabulates the accuracy for both topologies. The accuracy
of the voting-based algorithm is greater than the greedy algorithm,
which in turn is better than the naive algorithm. More specifically,
the voting-based algorithm achieves an average 86.2% accuracy for
these two topology, with an average improvement of 15.7% and
28.2% compared to the greedy algorithm and the naive algorithm
respectively. The accuracy in Table 1 differs from Figure 5 because
here we need to separate out multiple devices instead of two. The
accuracy of the grid topology is lower than the line topology be-
cause we need to onboard 6 devices in the grid topology whereas
only 4 in the line topology.

5.4 Other Testing Scenarios

Target and Non-target Devices. We randomly deploy 5 target
devices on ceiling at the conference room and 2 non-target devices
on ceiling at corridor outside the room, imitating the case where
some devices are not visually present. In this setting, the voting-
based algorithm achieves 92.0% accuracy of identifying device IDs
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2 feet apart on ceiling | 4 feet apart on ceiling
Naive 53.8% (median) 62.2% (mean)
Greedy 76.5% (mean) 64.4% (median)
AIDE 87.9% 84.4%

Table 1: Accuracy of onboarding multiple devices that are
shaped into a line and a grid

for the target devices. We also calculate the percentage that target
and non-target devices are falsely categorized as non-target (i.e.,
false negative) and target devices (i.e., false positive), which is 6.0%
and 15.0% respectively. In general, the false ratio does not depend
on the number of target and non-target devices, but rather depends
on the relative signal strength of these devices. False ratio is lower
when target devices have larger difference of signal strength at the
measurement locations compared to non-target devices.
Approachable Scenario. In approachable setting, where we de-
ploy 5 devices at various positions such as on table, floor and TV
top in the medium conference room. In this case the voting-based
algorithm achieves 100% accuracy. Here the result is as expected, as
we have measured RSS very close to the target device, and thus the
likelihood of that device at its measurement location is significantly
higher than at other measurement locations.

6 RELATED WORK

Previously researchers have addressed the challenges of associating
the physical device and the device identity under different circum-
stances. For instance, recently [7], researchers have used on-board
inertial-sensors to correlate between motion information sensed
by the sensors and the physical object detected by the camera [8].
This solution assumes target devices to be in motion, and to have
on-board motion sensors. In other circumstances [9, 10], RF-aided
localization techniques have been used, which require additional
infrastructure support (i.e., anchor points, directional antennas [10],
etc.). Furthermore, using only RSS for localization has an average es-
timation error of 2 meters for BLE [11], which makes it challenging
to distinguish devices that are less than 1 meter apart. Unlike pre-
vious works, our proposed solution does not require infrastructure
support or special hardware requirements for IoT devices.

7 DISCUSSION AND FUTURE WORK

In this paper, we have proposed AIDE that targets at an emerging
necessity to on-board IoT devices in more intuitive and easy way. At
the center of this solution is the voting-based algorithm that process
RSS measurement to associate device identification at different
physical locations. Through evaluation, we have shown that the
proposed algorithm can achieve over 90% accuracy in different
physical settings.

Although RSS profiles are subject to environmental changes, our
data measurement procedure mitigates the effect because we col-
lect data with the phone making circular movement for a period of
time. During our data collection in the building, people occasionally
walked nearby, but our system still shows promising performance.
In fact, as long as there is a direct line-of-sight path between the
target device and its corresponding measurement location, any
blockage between this measurement location and other devices

actually improves the accuracy because the signal strength of other
devices at this measurement location is reduced, which makes vote
value higher for the target device for this location compared to
other locations. As a result, voting based algorithm is more likely
to produce the correct device mapping. Currently, we allocate 30
seconds at each measurement location. We plan to reduce the mea-
surement time length by designing an indicator that automatically
prompts to the user when to stop measuring at each location, and
thus mitigate user’s burden of data collecting.

In general, our algorithm is not affected by the transmission
power because it does not directly use absolute RSS values. In-
stead it is based on the difference of RSS at different measurement
locations. Presence of WiFi devices may potentially affect the mea-
surement for BLE devices due to channel overlap. However, during
our experiment the inference of WiFi signal does not seem to have
much impact. Nevertheless, we plan to explore the environment
with mixture of WiFi and BLE more carefully in our future work.

Considering that BLE signals transmit at different channels (i.e.,
hopping) and each channel has its own characteristics, we want to
explore techniques such as channel separation [12] and leverage
different channels separately to improve the accuracy. In addition,
we want to explore whether machine learning can result in a better
RSS profile representation than the metric mean which is used
in our current implementation. We also plan to study the system
performance with other wireless standards such as Wi-Fi, Zigbee,
etc. Finally, as part of our future work, we plan to implement and
integrate the visual part of AIDE to build a user-friendly augmented
on-boarding solution.
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