
Smart Contract-based Computing Resources
Trading in Edge Computing
Jinyue Song∗, Tianbo Gu∗, Yunjie Ge †, Prasant Mohapatra∗

∗ Department of Computer Science, University of California, Davis, CA, USA
† Department of Computer Science, University of San Francisco, CA, USA

Email: {jysong,tbgu,pmohapatra}@ucdavis.edu, yge7@dons.usfca.edu

Abstract—In recent years, there is an emerging trend that
some computing services are moving from cloud to the edge of
the networks. Compared to cloud computing, edge computing
can provide services with faster response, lower expense, and
more security. The massive idle computing resources closing to
the edge also enhance the deployment of edge services. Instead
of using cloud services from some primary providers, edge
computing provides people a great chance to join the market
of computing resources actively. However, edge computing also
has some critical impediments that we have to overcome.

In this paper, we design an edge computing service platform
that can receive and distribute the computing resources from the
end-users in a decentralized way. Without the centralized trade
control, we propose a novel Blockchain-enabled decentralized
technique to establish the trade trust among users and implement
it with using embedded immutable intermediary smart contract.
Our system also considers and resolves a variety of security and
privacy challenges when utilizing the Blockchain technique. We
implement our system and conduct extensive experiments to show
the feasibility and effectiveness of our proposed system.

Index Terms—Blockchain, Smart contract, Edge computing,
Cloud computing, Resource trading, Security and privacy, Dis-
tributed system, Ethereum.

I. INTRODUCTION

Cloud computing refers to massive data computing process-
ing and analyzing through the ”cloud” network, which consists
of multiple servers. It has some drawbacks: high latency,
high operating overheads, and high risks of data security and
privacy. If storing data in the cloud, users can only trust cloud
providers, such as Amazon AWS and Microsoft Azure, to
protect their data, which is out of users’ control.

In an edge computing network, the edge can be any func-
tional entity from the data source to the cloud computing
devices. These entities are equipped with edge computing
platforms that converge network, computing, storage, and
application core capabilities to provide real-time, dynamic, and
intelligent computing service to end-users. Unlike processing
tasks in the cloud, edge computing is the action to push in-
telligence and computing closer, which shortens the transition
distance and provides low latency computing service. Many
families now have idle and powerful computing resources,
such as iMac and Macbook Pro. This condition is the premise
that our system can propose because users with idle computing
resources can conduct computing resource trading with others
who need computing services.

Even though our proposed system, based on edge com-
puting, has provided users with convenience and benefits, it
still has the challenges of system operation, data security, and
user privacy. A large number of users with idle computing
resources and computing requests, makes it challenging to find
a suitable matching mechanism to discover each other. For
example, a central controller in the cloud computing network
can manage all users’ activities, but this design makes it
to be the bottleneck in the system and significantly affects
performance.

In a decentralized network, such as an edge computing
network, without a credit institution endorsing the user, it
is difficult for the user to trust the other party and make a
payment. Therefore, we have embedded blockchain [1] and
smart contracts [2] to help users reach trading activities in
untrusted networks. Since blockchain technology only solves
the issue of user payment [3], it is not suitable for storing
a large amount of computing data and protecting sensitive
information.

High latency [4] is another disadvantage of the blockchain,
so we need to design smart mechanisms to reduce the latency
time and deliver services faster to users. In addition, there is a
cost of deploying smart contracts on the blockchain platform,
which is measured by gas [5]. The execution of each code
fragment will consume a certain amount of gas, so we should
design the contracts with lower complexity and satisfy the low
latency requirement.

Contribution: In summary, our contributions break down
into the following aspects:

• We propose an edge computing system, which is con-
trolled by smart contracts to maintain trading activities
between users in the resource sharing network.

• We formally define this system with four layers, which
can accurately reflect the data flow and interaction of each
component.

• We propose a hierarchical smart contract group to effi-
ciently allocate a massive influx of users into edge net-
works and reduce service latency time, which is explained
in the Evaluation section.

• We provide users with flexible interfaces to choose ex-
isting smart contracts or customize a new one. It gives
users the freedom to create smart contract policies and to
satisfy their requirements.978-1-7281-4490-0/20/$31.00 © 2020 IEEE

2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications: Track 4: Applications 
and Business

978-1-7281-4490-0/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 14,2020 at 20:37:25 UTC from IEEE Xplore.  Restrictions apply. 



• We provide security service in the computation monitor
layer, where service and payment are guaranteed to get
delivered. We use RSA protocol to solve the data leaking
problem and OneSwarm [6] to prevent unauthorized users
from accessing computing data.

• We provide an optimal formula for system model, simu-
late the resource trading activities in a blockchain envi-
ronment, and evaluate the system performance based on
different allocation smart contracts design.

Roadmap: The rest of the paper is organized in the follow-
ing sections: Section II describes the edge computing system
mechanism, including the overview architecture, participants
in the network, and the formalized essential variables. Also, we
explore the optimal solution in latency and operating costs in
our design. Section III presents the system design with system
components in each layer and how the layers interact with each
other. Section IV shows our simulation and evaluation. Finally,
in section V and VI, we present the paper related work and
conclusion.

II. SYSTEM MODEL

In our proposal, the main participants of the system are
consumers seeking computing resources, service providers
selling computing resources, and a mechanism managing
users’ resource trading activities. Consumers and providers
carry out resource trading with the support of blockchain.
Under the premise of reasonable overheads, our system should
give users a platform that can match them efficiently with low
latency, and also provide a secure data transmission solution.

A. Computation Consumer

Consumers firstly register with the system and submit their
conditions, including budget, CPU, bandwidth, and location.
Then, based on the provided regions, these consumers enter the
local edge computing network to match the service providers.
Consumers pay for the computation resource provided by the
service providers, and the system will monitor and verify their
trading activities. We consider that each consumer registration
is a distinct representative in the system. If there is a second
registration request from this consumer, we consider that the
system will generate another representative.

B. Service Provider

There are two types of service providers: the computing
provider and the storage provider, who provide the consumers
with the functions of computing and storage in their local
machines. Our proposed system will precheck providers’ con-
ditions and match qualified ones with the consumer. Then,
the qualified computation provider supports the consumer for
his computation tasks with his machines. This process is
monitored by our system, which is responsible for manag-
ing the remuneration and working schedule. Similarly, the
storage providers provide temporary storage services on their
machines for consumers. We embed a distributed storage
mechanism with encryption in our system to guarantee the
data security. Storage providers can store the distributed data

Fig. 1. Smart Contract-based Computing Resources Trading Architecture.

only without reading or writing permission. Also, the entire
data distribution status is invisible to storage providers. So,
it is impossible to hack the local data chunk because the
storage provider does not have keys to decrypt it. Therefore,
the security of all data is guaranteed.

C. Matching and Resource Trading

We propose a hierarchical structure in the system to support
users’ resource trading activity. This structure assumes the
responsibilities of user registration in the first layer, allocation
and status verification in the second layer, and trading activity
supervision in the third layer. Resource trading is our primary
purpose. Our design has the following three advantages: re-
duce the matching time of users, increase their engagement
success rate, and optimize the minimum operating cost.

Users, including consumers and service providers, register
to the service layer first. Then, in the second layer, our system
will allocate users to the corresponding regional edge network
according to the location provided at the time of registra-
tion, regardless of user types. After that, in the third layer,
consumers distribute computing data to storage providers
and do computation tasks remotely on provider’s machines.
The consumer and service providers trade directly under the
supervision of our system at layer three. Our proposed system
collects consumer’s deposits and then sends a commission to
the service providers according to service time. This process
ensures the fairness of the trading and maximizes the revenue
of the service providers. Other than that, this process provides
users with multiple trading options to meet their various
requirements. For example, some consumers focus on faster
computing services, and some service providers want higher
profit returns. They can choose a trading option that matches
them with suitable partners to meets the requirements.

D. Latency Minimization

Latency is the time difference between the ti when the con-
sumer enters the edge computing network and tj when he gets
matched with the service provider. We consider that latency is
affected by four factors: 1. the consumer’s willingness to pay

2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications: Track 4: Applications 
and Business

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 14,2020 at 20:37:25 UTC from IEEE Xplore.  Restrictions apply. 



bidC for the computing service, 2. service providers’ charging
price chargeP , 3. the number of consumers’ satisfied require-
ments, and 4. the waiting queue length |Contractm.Queue|
in the matchmaker smart contract, which will be defined and
explained detailedly in the System Design section. We extract
dominating factors 1 and 2 for the formula. After registering
in the distributed controller smart contract in layer one, the
consumer will be allocated to the corresponding local edge
computing network and then into the queue of the matchmaker
smart contract, which finds service providers to engage this
consumer. We thus establish the latency formula:

Latency = {bidC , chargeP , CondCP ,
|Contractm.Queue|, δ} (1)

where we have a transition function δ provided
by the matchmaker to determine the value
of the latency for consumer C, latencyC =
δ(bidC , chargeP , CondCP , |Contractm.Queue|), and the
conditions between the consumer and service providers are
defined as CondCP = {Cond1, Cond2, ..., Condn|Condi =
{1, 0}}. In our design, when the consumer’s bid is greater
than or equal to the service provider’s charging price, the
two parties will further compare the hardware conditions
and reach an engagement. Otherwise, this consumer will
be pushed to the Contractm’s waiting queue for incoming
providers. In our default engagement algorithm, n number
of service providers are sorted in the binary search tree
structure, and the searching time complexity is O(lg(n)).
For m number of consumers, the total consumption time is
O(m× lg(n)) on average.

E. Engagement Maximization

The matchmaker smart contract manages the engagement
activity between the consumer and service providers in layer
two. We use the binary search tree instead of a linked list
or hash table to store service providers because its time
complexity is smaller than the other two. The time costs of
the insertion, deletion, and lookup in the tree structure is
O(lg(n)), but the other two structures implemented by Solidity
have O(n). Then, both consumers and service providers could
select the smart contract, Min Latency, for example, which
could maximize their benefit. In the next section, we will
present that the engaged consumer and service providers
collaborate with the monitor smart contract.

The engagement rate is the number of matched consumers
divided by the total number of all consumers. The role of our
proposed system is to efficiently match consumers and service
providers in the edge computing network. Engagement rate
EngRate is a good measure of system performance, which is
defined as follows:

EngRate =

∑|C|
1 γ({CondCi

Pi
)

|C|
(2)

for all 1 ≤ i ≤ |C| and |C| is the total number of consumers
entering this network. In the formula, we define γ is a function

provided by the matchmaker smart contract to determine if
these consumer and service providers could be engaged based
on their conditions. It returns binary values: 1 for successful
engagement and 0 for failure.

F. Minimum Operating Cost Optimization

At the system level, we are concerned about the operating
costs of the entire system, including five factors: adding new
users, deleting invalid users, retrieving and matching users,
regular communication between all parties, and building smart
contracts. The cost of building a smart contract is a fixed
constant, but the value of the other four factors will increase
with a larger number of users, no matter the implemented data
structure. We want to slow down the cost growth as the number
of users increases, to ensure that smart contracts can operate
within a controllable cost range. At the same time, we want to
find the optimal five parameters for the operating cost formula
in polynomial time complexity, which turns into a P vs. NP
problem. Thus, we have the cost formula:

Cost = {Op∗, Eng, Comm,Setup, λ} (3)

where Op∗ represents for all the combination of addition, dele-
tion and lookup operations, Eng is the engagement process,
which can be calculated by EngRate × |C|, Setup is the
essential cost to initialize the contract, and λ is the transition
function to calculate the cost.

We calculate the average value and variance of the operating
cost on each pair of consumer and service providers. The
purpose is to get a stable overhead at the minimum operating
cost for optimal parameters. First, we get the arguments that
allow variance and average of the total cost to be minimum:

argsvar = arg min var(λC,P ) (4)
argsavg = arg min avg(λC,P ) (5)

where λ calculates each of the costs for all pairs of consumers
and service providers.

Then, we adjust argsvar and argsavg into the cost function
with penalty ζ in order to get the global minimum (optimal)
arguments:

argsoptimal = minCost(argsvar, argsavg, ζ) (6)

In the next section, we present the evaluation of our system
by simulating consumers and service providers’ activities in a
private blockchain environment.

III. SYSTEM DESIGN

A. Overview

Our resource sharing system contains four layers for users’
engagement and computation in the edge computing network.
As shown in Fig. 1, these four layers are Service Layer SL,
Distributed Controller layer DSL, Computation Monitor layer
CML, and Blockchain layer BL. This system supports two
primary functionalities: 1. matching n number of consumers
{C : C1, C2, ..., Cn} and m number of service providers
{P : P1, P2, ..., Pm} for the win-win purpose and 2. avoiding

2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications: Track 4: Applications 
and Business

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 14,2020 at 20:37:25 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Layer 2 Distributed Controller Layer: illustrated by an example of
consumers and providers from Bay areas, Beijing and New York.

scams during the cooperation between the two parties. The
system ensures that consumers can receive qualified com-
puting services, and service providers can receive reasonable
compensation. Also, this system can guarantee the security
of transmitting data and privacy of user identification. So,
we introduce eight entities in this system: three types of
users (consumers C, computation providers P c, and storage
providers P s), three types of smart contracts (distributed con-
troller Contractd, matchmaker Contractm, and intermediary
Contracti), nodes known as miners, and blockchain. Smart
contracts are the core of this system, and they are responsible
for its operation. Activities in the first three layers will be
packaged into transactions and recorded on the blockchain at
layer four.

B. Service Layer

Service layer SL is the first layer in our system. It is
responsible for user registration and user status collection.
Users will be allocated and distributed to the local edge
computing network based on their regions. Then, the second
layer Distributed Controller layer will take care of users for
matching mechanism.

Distributed Controller Contract: In SL, consumers C
and service providers P send transactions to the distributed
controller Contractd first, which contains their registration in-
formation and conditions {Cond : Cond1, Cond2, ..., Condj}
like a maximum budget for the virtual machine service, and
work deadline, etc. This budget is an essential factor affecting
the matching result. Based on users’ regional information, they
are distributed to a queue of the local edge computing network
by Contractd in the next layer. So, Contractd is a cross-
layer contract, transferring registered users from layer one to
two. Our system improves the speed of user allocation and
reduces the latency of the service. Besides, users C and P
also provide their status information, such as bandwidth, to
make the system more accurately match them and improve
the success rate of matching.

C. Distributed Controller Layer

Distributed Controller Layer DCL is the second layer as the
core joint component in this system. It accepts users from the

first layer, matches consumers and service providers according
to the conditions, and then passes the matched users to the
third layer, allowing it to supervise the users’ resource trading.

Matchmaker Contract: As DCL shown in Fig. 2, there
are three smart contracts distributed controller Contractd,
matchmaker Contractm, and intermediary Contracti, which
form an inherited structure. Based on the user’s regional
information, Contractd assigns the users registered in layer
one to their local edge computing network and passes the
users to the matchmaker Contractm, which is responsible
for the matching of local consumers and service providers.
Then, users C and P have the freedom to choose one of
Contractis that can maximize the revenue R, and supervise
their collaboration. For the matching mechanism, we optimize
the user data storage structure of the Contractm, increase its
matching speed, and reduce the gas cost during the matching.
Since the limitation of the gas cost measurement method in
smart contracts, and more reading operations about user data
than writing, we modify a tree structure to store user data. As
described in section two E, the logarithmic complexity cost in-
crement of the tree structure is much lower than the complexity
of the linear complexity cost. Compared with a single central
controller node, the matchmaker contract shortens the time
cost of matching, which meets the user’s requirements for low
latency in the edge network. The evaluation section presents
and quantifies our optimization of the matching mechanism.
After users C and P match successfully, the intermediate
Contracti will supervise and manage their resource trading
activities in layer three.

D. Computation Monitor Layer

Computation Monitor Layer is a specific execution layer
for user resource trading. It receives matched users from the
second layer and supervises their resource trading activities,
ensuring that the trading activities are fair for both sides.

Intermediary Contract: Shown in Fig. 3, the intermediary
Contracti inherits the paired consumer and service providers
from the matchmaker smart contract in layer two. We build
a security transmission channel and payment mechanism be-
tween consumers and service providers. Our proposed trans-
mission channel uses the RSA encryption mechanism to en-
crypt the data stored among the distributed storage providers,
and embeds the OneSwarm protocol, allowing users to flexibly
manage the other users’ access permissions to his distributed
data chunks. For example, the matched consumer Ci processes
data and computation on the Virtual Machine (VM) provided
by the computation provider PC

j whose working process is
monitored by Contracti. Similarly, the storage providers PS

provide temporary storage services on their VMs for con-
sumers. After the computing data is encrypted and distributed
among PSs by the consumer Ci, the data access permission
for PS

i is storage only. This design ensures that the data is
secured and will not be leaked. At the same time, even if
some nodes of the storage providers fail, the user can still
download the entire data. Before the execution of this contract,
the consumer must pre-process his data and distributively map

2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications: Track 4: Applications 
and Business

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 14,2020 at 20:37:25 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Layer 3 Computation Monitor Layer: selected intermediary smart
contract monitors and manages matched consumer and service providers’
trading activities.

them to storage providers, where the computation provider can
access this data.

There are six operations shown in Fig. 3:

1) consumer C deposits his budget, and then Contracti

generates the VMs in computation provider and assigns
storage providers for this consumer;

2) consumer C and computation provider PC exchange
their public key so that they can verify the encrypted
data and signature from the other side;

3) consumer C divides the whole data into chunks and map
them to tasks ts, which have task IDs associated with
each chunk;

4) consumer C encrypts tasks by a private key and send
them to storage providers PS ; then he updates dis-
tributed hash table (DHT), where the task ID and storage
providers IP addresses are in pair;

5) consumer C sends the DHT signed by his private key
to computation provider PC ;

6) computation provider PC verifies the DHT by the
consumer C’s public key, and then they are ready to
compute tasks for rewards in the next stage.

OneSwarm provides data flexibility and qualified privacy.
The data host can customize the access permission for other
users. Assuming the consumer has two datasets, d0 for
provider 0 and d1 for provider 1; d0 is accessible for the
trusted peer provider 0, not untrusted provider 1; contrary,
d1 is accessible for trusted provider 1, not provider 0. This
design allows the consumer to manage his dataset flexibility
for different computation scenarios. Since the data is available
for trusted users only, unrelated users cannot read the data
chunk without an assigned key. Thus, this design provides
security and privacy.

Contracti plays as the intermediary between consumer C
and service providers P . It holds the consumer C’s deposit
and guarantees service providers P to be paid for every unit
time ∆t when the VMs are occupied. The contract receives a
notification from the consumer C to check out, then, it squares
up with service providers and returns balance to the consumer.

E. Blockchain Layer

Blockchain Layer is a data storage layer. It interacts with the
other three layers and is responsible for saving all execution
results, and computing data results in the system.

Blockchain Database: We consider the blockchain as the
database for our design. As shown in Fig. 1, the data generated
within layers one, two, and three, and the data transferred
across layers are packaged into transactions and written to
the blockchain database. This data includes user registration,
matching results between consumers C and service providers
P , and progress and results of work completed under con-
tract supervision. The computation results are stored in the
blockchain because they are immutable receipts for comput-
ing consumption. Moreover, to clarify, these transactions are
proofs of the computation result instead of the computation
data provided by the consumers C. This design ensures that the
data results will not be manipulated, and provides the function
of verifying the computation result authenticity. The user can
compare the hash values between the received computation
result and the result written in the blockchain, to verify
whether the current data is valid.

F. Security and Privacy

We highlight the six primary properties of this system on
security and privacy aspects:
• Identity isolation: participants in the network do not know

each other until the smart contract matches a pair of a
consumer and providers.

• Data encryption: matched consumers and providers use
RSA for data security.

• Data integrality: DHT assigns taskID to service
providers IPaddresses and records the data distribution
in key-value pairs.

• Access control: thanks for the protocol OneSwarm, con-
sumer and provider could manage peers to access the data
in rich options.

• Trust in edge: there is no data center to filter and record
all information.

• Anti-fraud: due to the immutability property in the smart
contract, no one can manipulate the operations and
records. Participants follow the rules in code.

IV. EVALUATION

We simulate the activities of users in the network of a
private Ethereum blockchain and measure the performance of
the edge computing system from three aspects: engagement
rate, matching time, and operating cost. First, we introduce
the environment configuration and program setup. Then we
evaluate the system and analyze the performance data. Our
purpose is to show the operability, stability, and scalability of
the system.

A. System Implementation

The system is deployed on the macOS Catalina in Version
10.15, with 2.9 GHz 6-Core Intel Core i9, 32 GB of DDR4
memory in 2400 MHz, and 8.0 GT/s Apple SSD. We simulate

2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications: Track 4: Applications 
and Business

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 14,2020 at 20:37:25 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Average engagement rate of different amounts of users and conditions.

Fig. 5. Variance of average engagement rate for ten-round simulations.

consumers and service providers as requests sent from a
Python script to the smart contract deployed in the Ethereum
private blockchain, which is generated by the software called
Ganache [7]. Our smart contracts are written in language
Solidity.

In the simulation, there are the following variables: the
number of users U ∈ {consumer C, service provider P} , the
distribution of the user’s area l ∈ {city0, city1, ..., cityM},
the budget budget ∈ {condCP }, and the valid sustainable time
sustainableT ime ∈ {condCP }. The number of consumers
and service providers |U | increases from 25 to 125, with
an interval of 25. The contract assigns storage providers
to consumers. Their regional distribution l is two or four
cities respectively; the budgets condbudget are $5 or $50,
respectively, and randomly increase in the range of 0 to 1;
the sustainable time condsustainableT ime of the two types of
users coincides with at least three quarters, and the difference
is controlled by the stochastic equation random(). In order to
get accurate and bias-free results, each combination is looped
for ten times to calculate their average avg and variance var.

B. Performance Evaluation

1) Engagement Rate Evaluation: We measured the engage-
ment rate in set ERset = {EngRateCi

Pi
} of consumers C and

service providers P . It is expected that the system can still
have a high engagement rate when the number of users |U |
increases, and the matching conditions conds become more
complicated. Fig. 4 shows that the engagement ratios of the
four combinations increase when the user number increases

Fig. 6. Average time cost for one engagement.

Fig. 7. Variance of time cost for a engagement among ten-round simulations.

in all conditions. Fig. 5 shows that the fluctuation of the
engagement rate decreases as the number of users increases.
The data point at 25vs25 in Fig. 5 is an outlier, because the
sample size in simulation is too small to have service providers
with different conditions, which cannot satisfy consumers. So,
in Fig. 4, the engagement rate is relatively low; in Fig. 5,
engagement rates are all similarly low, leading to the low
variance value; in Fig. 6, the small sample size and the lacked
diversity cause few users’ conditions can be matched so that
the system simulation can terminate earlier. Based on these
three graphs, we can conclude that when there are more users,
the engagement rate and the system performance become
higher and more stable. Thus, this system is highly scalable.

2) Matching Time Cost Evaluation: Regarding matching
time Match = {matchCP } for all consumers C and service
providers P , we care about its average and variance values:
avg(matchCP ) and var(matchCP ). Fig. 6 shows that when
users have more budgets and are distributed into more areas
like four cities, the average matching time will decrease. We
can predict that when the network scale expands to cover
many users, cities, and smart contracts, the time cost will be
reduced more, and the latency time will be further reduced.
Fig. 7 shows that the variance of time cost increases but it is
acceptable for bias in few seconds.

3) Minimum Operating Cost Evaluation: Operating cost is
the amount of gas used for contract executions. In Fig. 8, the
average cost avg(costcontractC,P ) of providers and consumers
is a stable and linear increase. This linear relationship is
acceptable because as the number of users increases, the

2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications: Track 4: Applications 
and Business

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 14,2020 at 20:37:25 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Average gas cost for one pair of consumer and providers.

Fig. 9. Variance of gas cost in matching consumer and provider.

searching workload for matching will increase. This linear
relationship can be represented as avg(costcontractC,P ) = αC,P×
|C + P |+ βC,P + εC,P .

Fig. 9 shows that the variance of consumers’ gas cost
var(costcontractC,P ) is much greater than providers’. Because in
our simulation, a consumer will traverse through all providers
on the waiting list to find the matching target. Even if the
consumers’ cost variance is much larger than that of the
providers, the absolute value of consumers’ cost variance is
almost negligible. Therefore, we believe that the operating cost
is very stable and can be added to the system model as linear
variables as σC,P × costcontractC,P .

V. RELATED WORK

In data security, the RSA encryption mechanism allows
our edge computing system to deliver data to the trusted and
untrusted ends [8]. However, this solution cannot fully solve
our data storage and security challenges. A distributed storage
system called Bigtable [9] shows that It can store the structured
data among severs for low-latency and high throughput. How-
ever, this method cannot handle data in inconsistent formats.

From the edge computing view, previous work focuses
more on the mobile [10] computation or the computation
in the 5G network [11], which has a faster response and
high-performance. However, those mobile devices are low
in sustainable energy, and computing power cannot satisfy
the advanced requirements, like video processing. Also, the
traditional cloud computing system could be inaccessible or
unstable when its central server or cluster is hacked [12].

The next aspect comes to the blockchain and smart con-
tract. The decentralized system [13] could execute the same
smart contracts asynchronously and have a consistency in
data recording. This design inspires our work that the edge
computing system could be decentralized, deployed on the
blockchain, and executed by smart contracts, which solves the
central controller drawbacks and potential crash issues [14].

VI. CONCLUSION

We design this blockchain-enabled computing system to co-
ordinate consumers and providers for resource trading, where
the blockchain is the database and smart contracts are inter-
mediaries to automatically execute without being manipulated.
This system provides data security by using RSA public and
private keys to encrypt tasks and sign messages. Because of
the distributed storage and OneSwarms protocols, this system
allows consumers to flexibly manage providers’ permission
about the data access in untrusted networks. So, it achieves the
dual purposes of flexible data management and privacy and
security protection. Except for these challenges, our system
resolves the challenges on user matching, operating cost, and
smart contract inheritance when implementing flexible contract
interface, customized tree structure, and four-layer structure.

REFERENCES

[1] W. S. S. Stuart Haber, “How to time-stamp a digital document,” Journal
of Cryptology, vol. 3, no. 2, pp. 99–111, 1991.

[2] w. m.-w. h. m. j. nadamsoreilly, kristenORM, “Smart contracts and
solidity,” ethereumbook, 2019.

[3] X. L. D. Z. Yinghui Zhang, Robert H.Deng, “Blockchain based efficient
and robust fair payment for outsourcing services in cloud computing,”
Information Sciences, vol. 462, pp. 262–277, 2018.

[4] R. Yasaweerasinghelage, M. Staples, and I. Weber, “Predicting latency of
blockchain-based systems using architectural modelling and simulation,”
in 2017 IEEE International Conference on Software Architecture (ICSA),
pp. 253–256, 2017.

[5] C. Dannen, Introducing Ethereum and solidity, vol. 1. Springer, 2017.
[6] A. K. T. A. Tomas Isdal, Michael Piatek, “Privacy-preserving p2p data

sharing with oneswarm,” pp. 111–122, 2010.
[7] Truffle Blockchain Group, “Ganache.”
[8] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public

key encryption with keyword search,” in Advances in Cryptology -
EUROCRYPT 2004 (C. Cachin and J. L. Camenisch, eds.), (Berlin,
Heidelberg), pp. 506–522, Springer Berlin Heidelberg, 2004.

[9] S. G. W. H. D. A. W. M. B. T. D. C. A. F. R. E. G. Fay Chang,
J. Dean, “Bigtable: A distributed storage system for structured data,”
ACM Transactions on Computer Systems (TOCS), vol. 26, no. 4, 2008.

[10] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications Magazine, vol. 26, no. 4, 2016. doi:10.
1109/MCOM.2016.1600492CM.

[11] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[12] M. M. Rodrigo Roman, Javier Lopez, “Mobile edge computing, fog et
al.: A survey and analysis of security threats and challenges,” Future
Generation Computer Systems, vol. 78, no. 4, pp. 680–698, 2018.
doi:https://doi.org/10.1016/j.future.2016.11.009.

[13] A. K. . A. M. . E. S. . Z. W. . C. Papamanthou, “The blockchain model
of cryptography and privacy-preserving smart contracts,” 2016 IEEE
Symposium on Security and Privacy (SP), vol. 78, no. 4, pp. 680–698,
2016. doi:10.1109/SP.2016.55.

[14] H. G.-M. Rafael Alonso, Daniel C Barbar, “Data caching issues in an
information retrieval system,” ACM Transactions on Database Systems
(TODS), vol. 15, no. 4, 1990. doi:https://doi.org/10.1145/88636.87848.

2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications: Track 4: Applications 
and Business

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on October 14,2020 at 20:37:25 UTC from IEEE Xplore.  Restrictions apply. 


