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Abstract—Three-Dimensional (3D) semantic segmentation is
an essential building block for interactive Augmented Reality
(AR). However, existing Deep Neural Network (DNN) models
for segmenting 3D objects are not only computation-intensive
but also memory heavy, hindering their deployment on resource-
constrained mobile devices. We present the design, implementa-
tion and evaluation of Slimmer, a generic and model-independent
framework for accelerating 3D semantic segmentation and facili-
tating its real-time applications on mobile devices. In contrast to
the current practice that directly feeds a point cloud to DNN
models, Slimmer is motivated by our observation that these
models remain high accuracy even if we remove a fraction of
points from the input, which can significantly reduce the inference
time and memory usage of these models. Our design of Slimmer
faces two key challenges. First, the simplification method of point
clouds should be lightweight. Otherwise, the reduced inference
time may be canceled out by the incurred overhead of input-data
simplification. Second, Slimmer still needs to accurately segment
the removed points from the input to create a complete segmen-
tation of the original input, again, using a lightweight method.
Our extensive performance evaluation demonstrates that, by
addressing these two challenges, Slimmer can dramatically reduce
the resource utilization of a representative DNN model for 3D
semantic segmentation. For example, if we can tolerate 1%
accuracy loss, the reduction could be ~20% for inference time
and ~9% for memory usage. The reduction increases to around
~27% for inference time and ~15% for memory usage when we
can tolerate 2% accuracy loss.

I. INTRODUCTION

3D segmentation is a process where a given 3D input (e.g.,
a point cloud) is divided into partitions that share the same
local properties [1]. It enables numerous novel applications.
Autonomous driving can leverage 3D semantic segmentation
for separating vehicles from pedestrians [2]. By providing
the crucial functionality of understanding the surrounding 3D
environment, semantic segmentation is becoming an essential
building block of AR [3]. For instance, a user can build a
visual-based system to (1) “moves” objects by changing the
location of a table in a room without actually moving it and
visualize how the scene looks like without that table [4]; (2)
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“plays” with objects by shooting a virtual ball into the scene
and watching how it bounces off different surfaces [5]; (3)
“controls” objects in the camera view by turning off a lamp via
making a gesture [6]; and (4) “merge” objects into the Virtual
Reality (VR) so that a user can both view the virtual world
and interact with physical objects (i.e., augmented virtual
reality) [7]. With the advance of machine learning, especially
deep learning, DNN models achieve the best accuracy for 3D
semantic segmentation, for example, in the ScanNet indoor
segmentation benchmark [8] and the Semantic3D outdoor
segmentation benchmark [9].

One issue of these DNN models for 3D semantic seg-
mentation is that they are not only computation expensive
but also memory intensive. The state-of-the-art SparseCon-
vNet [10] takes on average 4.2 seconds and 2.8 GB memory
for segmenting a point cloud of an indoor scene on a powerful
laptop. The overwhelming inference time and memory usage
of these DNN models hinder their deployment on devices
with limited resources and for applications with strict latency
requirements. In general, it is challenging to optimize a DNN
model’s inference time and memory usage while not degrading
its accuracy [11]. Existing acceleration techniques such as
parameter quantization [12] and network pruning [13] either
require time-consuming retraining of models and/or result in
a low accuracy. Hence, it is highly desirable that a pre-trained
DNN model is untouched during the optimization, which does
not necessitate laboring engineering of repeatedly tuning the
same model.

Besides the above generic methods, the mobile comput-
ing community has proposed many specific technologies to
accelerate DNN models for processing 2D images, such as
offloading to the cloud [14], model selection [15], and hard-
ware parallelism [16]. However, it is non-trivial to extend
these methods for 3D objects, which brings several unique
challenges. The input 3D object of semantic segmentation
could be either a point cloud or a 3D mesh (more details
in Section II). We focus on point cloud in this paper, mainly
because of its simplicity and flexibility compared to 3D mesh.
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Fig. 1: System architecture of Slimmer: It first sparsifies
the input and executes the pre-trained DNN model on this
simplified input. Then, Slimmer segments the removed points
using the KNN technique. Finally, Slimmer aggregates the
DNN output (for the simplified input) and KNN output (for
the removed points), and creates a complete segmentation for
the original full-size input.

Differently from 2D images that have a regular shape (i.e.,
an image has a fixed number of rows and columns for its
pixels), point clouds usually have an irregular shape and a
varied number of points in them, due to the non-uniform
distribution of sampled points in a 3D space. The non-uniform
point density of point clouds makes the estimation of inference
time for these DNN models difficult, which is essential for
model selection and hardware parallelism.

We propose Slimmer, a generic and model-independent
framework, for accelerating 3D semantic segmentation. The
design of Slimmer is motivated by our observation that the
DNN models for 3D semantic segmentation remain high
accuracy even if we remove a fraction of points from the input.
However, this input simplification may significantly reduce
inference time and memory usage, compared to the current
practice that directly feeds a point cloud to the DNN models.
Although this idea sounds straightforward, there are two key
challenges for making Slimmer practical. First, we need to
determine a lightweight simplification method to sparsify the
point clouds. Otherwise, the extra computation time for input-
data simplification may be higher than the reduced inference
time, which cancels out the benefit of Slimmer. Second, we
still need to accurately segment the removed points from the
original full-size input to create a complete segmentation.
The method for segmenting removed points should also be
lightweight.

We illustrate the system architecture of Slimmer in Figure 1.
Instead of directly feeding the input to the pre-trained DNN
model, Slimmer sparsifies the point cloud and executes the
DNN model on the simplified input, for reducing the inference
time and memory usage. We identify several simple but
effective methods for sparsifying point clouds such as the
random simplification, the grid simplification [17], and the
hierarchy simplification [18]. Afterward, Slimmer segments
the removed points using a lightweight K-Nearest-Neighbors
(KNN) based technique, which assigns segmentation labels to
these points by considering the segmentation results of the
DNN model for their neighboring points in the simplified
point cloud. By aggregating the DNN output (for the simplified
input) and the KNN output (for the removed points), Slimmer
generates a complete segmentation for the original full-size

point cloud.

In general, there is a tradeoff between resource utilization
and model accuracy. The more points we remove from the
input point cloud, the higher reduction we can achieve for
inference time and memory usage, but at the same time the
higher the accuracy loss of the 3D semantic segmentation
models could be. Hence, to quantify the improvement of Qual-
ity of Experience (QoE), we propose a metric that explores the
design space by jointly considering the segmentation accuracy,
the inference time, and the memory usage. Using this metric,
we extensively evaluate the performance of Slimmer using
the SparseConvNet [10] model, and investigate the impact
of various design factors, including the amount of remaining
points after simplification, the simplification method, and the
configuration of KNN.

To the best of our knowledge, Slimmer is the first model-
independent framework for accelerating 3D semantic segmen-
tation based on data simplification. Compared with existing
solutions, the key advantage of Slimmer is that it does not
require any modifications to the pre-trained DNN model, and
thus is generic and widely applicable. In summary, we make
the following contributions.

1) We observe that input data simplification can reduce
the inference time and memory usage of 3D semantic
segmentation models, but with limited impact on seg-
mentation accuracy.

2) Motivated by the above observation, we propose
Slimmer that executes the DNN model on a simplified
point cloud, and leverages a lightweight KNN technique
to segment the removed points.

3) We implement a prototype of Slimmer and extensively
evaluate its performance using a state-of-the-art DNN
model for 3D semantic segmentation and an open
dataset.

II. RELATED WORK

In this section, we present related work on deep neural
networks for 3D semantic segmentation, mobile augmented
reality, and methods of accelerating DNN models for mobile
systems.

Deep Neural Networks for 3D Semantic Segmentation.
As a pioneer work of 3D classification and segmentation,
PointNet [19] directly consumes points in a point cloud and
then applies max pooling to reserve the permutation invari-
ance of points. Recently, sparse convolutional layers [20],
[21] are designed specifically for sparse data such as point
clouds, which supplement conventional dense convolutional
layers. To combat the active-site dilation problem in sparse
convolutional layers, submanifold sparse deep neural networks
are proposed [10]. In submanifold sparse neural networks,
the active sites remain the same across the whole network,
which in turn have the same number as the input layer (i.e.,
the number of points). The most accurate DNN models for
the ScanNet indoor segmentation are SparseConvNet [10] and
Minkowski [22], both are based on submanifold sparse neural
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Fig. 2: The performance of the pre-trained model over the sparsified point clouds with different simplification ratios
(using random simplification). The performance at 100% simplification ratio represents the model performance without data

simplification.

networks. In this paper, we focus on submanifold sparse neural
networks due to their high efficiency and accuracy.

Mobile Augmented Reality. GLEAM [23] builds a photo-
realistic AR system by estimating the illumination of the
virtual objects so that the virtual objects can vividly blend
into the physical world. On the contrary, Tian et al. [7] build a
augmented virtual reality system in which the physical objects
are merged into the virtual world. Schutt et al. [6] apply a
2D semantic segmentation DNN model to consecutive RGB
images of surrounding environment, and then build a 3D scene
for it. There are emerging works on leveraging 3D semantic
segmentation for AR in the past few years, which offers
deeper understanding of surrounding environment compared to
solutions that use 2D images as input. For example, Ishikawa
et al. [4] apply a 3D semantic segmentation DNN model
to indoor point clouds for users to move objects in the
scene. Immersive gaming is another application of mobile
AR, in which a user can play games in the surrounding
3D environment [5]. In this paper, we aim to accelerate 3D
semantic segmentation for mobile augmented reality.

Accelerating DNN Models for Mobile Systems. There are
generic techniques to accelerate DNN models, such as pa-
rameter quantization [12] and network pruning [13]. Although
they can greatly reduce the inference time and memory usage
and thus are widely adopted by the industry, they often lead
to much lower accuracy than the original model. Another
popular technique is offloading computation-intensive tasks
to a cloud server, in light of that a cloud server is usually
equipped with much more powerful hardware than mobile
devices. However, offloading is not always practical because
of the large size of data transmission and privacy concerns.
Smartphones are equipped with many computation resources
such as CPU, GPU, and DSP. It can speed up model execution
if these resources could be used in parallel. MobiSR [16]
partitions an image into small patches, and runs these patches
on CPU, GPU, and DSP in parallel. Differently from the
above approaches, Slimmer is a model-independent solution
to accelerate DNN models for 3D semantic segmentation,
without requiring any modifications to the pre-trained models.

III. MOTIVATION

In this section, we measure the performance of a represen-
tative DNN model for 3D semantic segmentation to motivate

the design of Slimmer. More specifically, we present our
observation that the model remains high accuracy even if
we remove a fraction of points from the input, which can
significantly reduce its inference time and memory usage.

We use the ScanNet dataset [8] that includes 1513 indoor
point clouds. They capture various indoor scenes including
living rooms, classrooms, and offices (more details in Section
VI). Each point of a ScanNet point cloud is classified into 20
classes such as wall, floor, and desk. We employ the widely
used metric Intersection Over Union (IOU) to quantify the
segmentation accuracy. This metric is an average of each
class’s Critical Success Index (CSI), i.e.,

1 N-—1
10U = — x Z; CSI(i) (1)

where N is the number of classes. C'SI(i) is the critical
success index of class 7, which is defined as:

B TP(i)
~ TP(i) + FP(i) + FN(i)

where T P(1), FP(i), and FN (i) stand for true positive, false
positive, and false negative for class ¢, respectively. IOU has
merits over point-wise accuracy because different classes have
highly biased number of points. For example, a model that
generalizes poorly can still achieve high point-wise accuracy
by predicting all points belongs to floor for a point cloud in
which most points represent the floor. By comparison, IOU
equally treats each class by averaging their CSIs.

For the semantic segmentation benchmark of ScanNet, there
are only two DNN models that achieve higher than 70% 10U
and have released model details, SparseConvNet [10] and
Minkowski [22]. In this paper, we focus on SparseConvNet,
since the design of Minkowski is based on SparseConvNet.
We first train a SparseConvNet model with the configuration
of 32 feature maps, residual-style and optional blocks. We then
conduct experiments on a Dell Alienware laptop (6-core 2.90
GHz 19 CPUs, 16 GB RAM). The pre-trained model achieves
10U of 71.18%, and takes on average 4.21 seconds and 2.83
GB memory for processing a point cloud. It is clear that the
state-of-art DNN model is too costly for mobile devices.

During the measurement study, we observe that the in-
ference time and memory usage of a submanifold sparse

CSI(i) @)
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Fig. 3: Visualization of Slimmer output for a point cloud that is sparsified by different simplification techniques. (a) is a
full-size point cloud, and (b) to (c) are a simplified point cloud that is 20% of its original size sparsified by the random, the
grid, and the hierarchy simplifications. The second row shows the DNN output for the corresponding point clouds. (i) is the
segmentation groundtruth, and (j) to (1) are the final output of Slimmer. We circle the regions that are falsely segmented in

the outputs.

convolution based DNN model grow approximately linearly
with the number of active sites of each layer, which in turn
equals to the active sites in the input. Hence, if we simplify
the input point cloud by reducing the number of points in
it, we may decrease the inference time and memory usage
of a pre-trained model when processing this sparsified point
cloud. However, the input data simplification may affect the
accuracy of semantic segmentation. We conduct the following
experiments to understand this impact. We reduce the num-
ber of points in each point cloud by removing a fraction
of randomly sampled points. We change the probability of
keeping each point and thus generate simplified point clouds
with different sizes. After that, we evaluate the performance of
the pre-trained model using the simplified point clouds. In this
paper, we define the simplification ratio as the ratio between
the number of points in the resultant sparsified point cloud
and the number of points in the original full-size point cloud.

Figure 2 shows the performance of this model with regards
to the accuracy, inference time, and memory usage using
randomly simplified point clouds with different sizes. We
present the results averaged over five runs. The performance
at 100% simplification ratio represents that of the model
without data simplification (i.e., the results of the pre-trained
model using full-size point clouds). We have the following
observations from the experimental results.

1) Model Accuracy. The IOU remains almost the same

even when only circa 60% points are used. It slightly
decreases to 60% 10U when point clouds are simplified
to only 27% of the original size. The results indicate that
real-world point clouds are highly redundant for the pre-
trained 3D semantic segmentation model. The accuracy
plummets when the size of a simplified point cloud is
too small, (e.g., smaller than 20% of the original size).

2) Inference Time. As we can see, the inference time is

approximately linearly correlated with the simplification
ratio. That is, the smaller the point cloud is, the shorter
inference time the model has. A point cloud of 50%
points takes about 60% processing time of the full-size
point cloud. Therefore, it is preferred to sparsify point
clouds as long as the accuracy loss is tolerable.

3) Memory Usage. The memory usage is also approxi-

mately linearly correlated with the simplification ratio.
The smaller the point cloud is, the smaller the memory
usage is. A point cloud of 50% points consumes about
70% memory of the full-size point cloud.

In summary, data simplification is effective for improving
resource utilization. It can significantly reduce the inference
time and memory usage and meanwhile maintain good accu-
racy. As long as the accuracy loss is tolerable, point clouds
should be simplified as small as possible. However, since
we simplify the input and thus the results do not necessarily
represent the original requirement of segmenting a given full-



size point cloud. Therefore, we also need to assign labels for
the removed points in the original point cloud.

IV. OVERVIEW OF Slimmer

In light of the observation that a pre-trained model can
segment a simplified point cloud with reduced inference time
and memory usage, we propose a framework, called Slimmer,
for accelerating 3D semantic segmentation. Figure 1 illustrates
the system architecture of Slimmer. Instead of directly running
the DNN model on the point cloud, Slimmer sparsifies the
point cloud, and executes the DNN model on the simplified
point cloud. After that, Slimmer segments the removed points
using a KNN technique. Finally, Slimmer aggregates the DNN
output (for the simplified point cloud) and the KNN output (for
the removed points) to finish the segmentation.

Figure 3 visualizes the output of Slimmer using a point
cloud as an example. Figure 3(a) is a full-size point cloud,
and Figure 3(b) to Figure 3(d) show the simplified point cloud
that is sparsified to 20% of its original size by the random, the
grid [17], and the hierarchy simplification [18], respectively.
The second row visualizes the output of the pre-trained DNN
model for the corresponding point clouds in the first row of
the figure. It clearly demonstrates that the pre-trained model
can still accurately segment simplified point clouds. Figure
3(i) is the segmentation groudtruth for the point cloud, and
Figure 3(j) to Figure 3(l) visualize the Slimmer output that
aggregates the DNN output (the second row) and the KNN
output (the number of neighbors in KNN is set to 1). We
use black circles to annotate the areas that are segmented
incorrectly. The system output falsely segments the wall in
the top as the door, and couldn’t segment the bottom-right
area. The system output is less accurate than running the DNN
model on the full-size point cloud (i.e.,, Figure 3(e)) because
we excessively simplify the input to only 20% of its original
size for the illustration purpose. From Figure 3 we can see
that (1) Slimmer can segment the full-size point cloud based
on the simplified input of the point cloud; (2) Simplification
methods affect the segmentation accuracy as we can see that
the areas of the falsely segmented regions are different.

Compared to the current practice of feeding the full-size
point cloud to the DNN model, Slimmer reduces the inference
time and memory usage of the DNN model (because of smaller
point cloud), but introduces extra overheads from the data
simplification and the KNN. As we will show in the evaluation,
the overall inference time and memory usage of Slimmer is
significantly smaller. In general, there is a tradeoff between
resource utilization and model accuracy. The more points
we remove from the input point cloud, the higher reduction
we can achieve for inference time and memory usage, but
at the same time the higher the accuracy loss of the 3D
semantic segmentation models could be. Hence, to quantify
the improvement of Quality of Experience (QoE), we propose
a metric that explores the design space by jointly considering
the segmentation accuracy, the inference time, and the memory
usage. Using this metric, we can investigate the impact of

various design factors, including the simplification ratio, the
simplification method, and the configuration of KNN.

V. SYSTEM DESIGN OF Slimmer

There are two essential components of Slimmer: the method
of simplifying the input point cloud, and the method of
segmenting the removed points from the input. To quantify
the improvement for each combination of the simplification
method, the simplification ratio, and the segmentation of re-
moved points, we first propose our system QoS. Afterward, we
present several simplification methods that might be effective
and lightweight. Last, we explain our KNN-based method of
segmenting the removed points, which together with the DNN
output creates a complete segmentation for the original full-
size input.

A. QoE Improvement based on Simplification Ratio

We propose a QoE that jointly considers the inference time
improvement, the memory usage improvement, and the accu-
racy loss. Specifically, our QoE is based on the simplification
ratio, and is defined as

QoE(r) = a-T(r)+ - M(r) — I(r) 3)

where r is the simplification ratio. T'(r) and M (r) is the infer-
ence time improvement and the memory usage improvement,
and I(r) is the accuracy loss. o and (3 are the weights for the
time and memory, which determines the preference of the user
requirement. For example, a large o means that the system is
more concerned with inference time, while accuracy loss is
more tolerable. T'(r), M (r), and I(r) are defined as

Ts(r)+Tp(r) + Tr(r)

o=t T (100)) 4)
M(r)=1- max(Ms(ﬁgﬂégé?,MR(r)) )
fn=1- f,io(%?)) (©)

where T)»(100), Mp(100), Ip(100) is the inference time, the
memory usage, and segmentation accuracy of the DNN model
executing on the full-size point cloud, T's(r) and Mg(r) is the
processing delay and memory usage of the data simplification,
Tp(r) and Mp(r) is the inference time and memory usage
of the DNN model on the simplified point cloud, T%(r) and
MFg(r) is the processing delay and memory usage of the KNN,
and Ip(r) is the overall segmentation accuracy.

Since the inference time improvement and the memory us-
age improvement are highly correlated (both are approximately
linear with the simplification ratio), we can simplify Equation
(3) to

QoE(r) = X-T(r) - I(r) )

where )\ is the new weight, which determines the importance
of the inference time improvement over the accuracy loss.
For example, if A equals 1, then the QoE equally treats the
inference time improvement and the accuracy loss. In practice,



it is usually preferred to not degrading the system accuracy too
much, while reducing the inference time and memory usage
as much as possible. Therefore, a reasonable range of \ is [0,
1.0].

Our system QoE (Equation (7)) is a convex function, when
A is in the reasonable range. The reasoning is as follows.
When we decrease the simplification ratio r from 100, T'(r)
increases while the accuracy I(r) remains the same, and thus
the QoE is increased. If we reduce the simplification ratio
r too much, then the accuracy loss I(r) would surpass the
weighted inference time improvement 7°(r), and thus QoE is
reduced. Therefore, for each combination of the simplification
method and the KNN configuration, there is an simplification
ratio r that gives the highest QoE. Based on the QoE value of
each combination of the simplification method, simplification
ratio and the KNN configuration, we can identify the best
combination that has the highest QoE than other combinations.

B. Simplification Methods

Different simplification methods generate sparsified point
clouds with different characteristics. For example, the sim-
plified point clouds from the hierarchy simplification look
much sharper than those from the grid simplification (as illus-
trate in Figure 3). The data simplification method should be
lightweight, otherwise it would cancel out the inference time
reduction of executing the DNN model on the simplified input,
which impairs the effectiveness of our data-simplification
based acceleration. We identify the following three simple but
effective methods for sparsifying point clouds.

1) Random Simplification. Each point is independently kept
with a given probability. Therefore, random simplifica-
tion regards each point equally.

2) Grid Simplification. Each point cloud is partitioned into
grid cells of a given size [17]. For each non-empty
grid cell, a point is randomly selected among the points
in that cell. Therefore, grid simplification favors sparse
points than dense points. This is because only one point
is kept no matter whether the grid cell is sparse (a few
points) or dense (lots of points). We change the grid size
to generate sparsified point clouds of different sizes.

3) Hierarchy Simplification. Tt provides an adaptive sim-
plification of a point cloud through local clusters [18],
which recursively splits the point set into smaller clusters
until the clusters have less than a given size. Hierarchy
simplification favors edge points than surface points and
thus generates sharp and vivid point clouds. We change
the target cluster size to generate sparsified point clouds
of different sizes.

C. Segmenting Removed Points by KNN

The data simplification procedure splits points into two
sets: points in the sparsified point cloud, and the removed
points that are filtered out. Since we know the labels of the
simplified point cloud from the DNN output, we only need
to segment the removed points in order to generate a full-
size segmentation. As with the data simplification method, the

method of segmenting the removed points must be lightweight.
Otherwise, it would cancel out the overhead reduction of
running the DNN model on the simplified input. We propose
to infer the label of a removed point by the majority label of
its nearest neighbors that are in the simplified point cloud. For
the sake of convenience, we denote the number of points of a
point cloud by n;, the number of points of the simplified point
cloud n,, and the number of removed points n,. Obviously,
ns +n, = ny. We use small k for the degree of dimension in
a k-d tree, and big K for the number of neighbors in KNN.
Below are our algorithm of segmenting the removed points.

1) We construct a k-d tree (kK = 3 as points are in 3D
domain) for the simplified point cloud. Each point in
the k-d tree has a segmentation label because the DNN
model segments the simplified point cloud. The k-d tree
construction is fast, with a worst-case complexity of
O(ng -logny).

2) For each removed point, we search its K nearest points
in the k-d tree. The neighbor searching for each removed
point is also fast, with complexity of O(logn,). Thus,
the overall complexity of searching neighbors for all
removed points is O(n,. - logny).

3) After we identify the K neighbors for each removed
point, we assign the the majority label of its neighbors
to the removed point. In the case that there is no
majority label (e.g., 2 neighbors are labeled as wall and
2 neighbors are labeled as floor when K equals 5), we
randomly assign the removed point with one label of
the largest number of neighbors. Each labeling for a
removed point costs the complexity of O(1), and thus
the overall labeling procedure has the complexity of
O(ny).

The overall complexity of segmenting the removed points
by our KNN based method is O(ns-logns)+O(n, -logng) +
O(n,) < O(ny - logng). The complexity indicates that our
KNN-based segmentation of the removed points is lightweight.
It is robust against the simplification ratio (i.e., ns/n;), and
scales well with the number of points of the original full-size
point cloud (i.e., with regards to ny).

There is one configuration in our KNN-based segmentation
for removed points, that is, the number of neighbors K. It
is straightforward that a larger K results in more processing
delay. However, it is unclear how the accuracy changes versus
the K.

VI. EVALUATION

In this section, we first introduce our experiment setup.
After that, we evaluate the performance of the KNN. Then,
we measure the performance of the simplification methods.
Afterward, we apply the QoE metric to explore the design
space. In the end, we present detailed overall system perfor-
mance.

Setup: We conduct experiments on a Dell Alienware laptop
that has 6-core 2.9 GHz 19 CPUs and 16 GB RAM. We use
the ScanNet dataset to train a SparseConvNet DNN model,
and use the validation dataset of it to evaluate our system.
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Fig. 4: Study of different number K on performance of the random, the grid, and the hierarchy versus the simplification ratio.
First column shows that different K do not affect the system accuracy. Second column shows that K = 1 has the least processing
delay. Considering the accuracy and processing delay, we adopt K=1 in the rest of experiments. The breakdown of processing
time of K=1 is plotted in the third column. The hierarchy simplification can only generate point clouds up to 60% of the

original size.

As suggested by the ScanNet, we split the dataset into 1201
point clouds for training and 312 point clouds for validation.
the point clouds of the ScanNet dataset are diverse: (a) The
number of points in each point cloud varies from 32.8K to
438.6K, with ratio of 13 times; (b) he space sizes of point
clouds vary from a small cubicle of 6.4 m? to a large office of
347.3 m3, with ratio of 54 times; and (c) The point density of
point clouds varies from 390.5 points/m? to 6851.6 points/m?,
with ratio of 17 time.

A. Segmenting Removed Points using KNN

There is one parameter in KNN segmentation for removed
points, that is, the number of neighbors K. We conduct
experiments to determine the optimal K value that achieves
high system accuracy and low KNN processing delay.

Figure 4 shows the KNN performance. The first column
shows the system segmentation accuracy (i.e., aggregated
outputs from the DNN and the KNN) when the random, the
grid, and the hierarchy simplification is applied. Unlike the
random and the grid, the hierarchy simplification can only
generate simplified point clouds of up to 60% of its original
size. We can see that whatever simplification method is used,
different K values result in almost same system segmentation
accuracy. The second column shows the processing delay of
the KNN. It clearly shows that the KNN with K=1 results
in least processing delays, for the random, the grid, and the
hierarchy simplification. Considering that higher K does not

bring higher accuracy, but causes greater delay, we adopt K=1
in the rest of evaluation.

We dissect the processing delay of KNN with K=1 into
two parts: the k-d tree construction time, and the searching
and labeling time. We plot the results in the third column of
Figure 4. We can see that whatever the simplification method
is used, the k-d tree construction takes longer time for bigger
simplified point cloud, and shorter time for the searching and
labeling. Overall, it takes about 35 ms to 60 ms for the KNN
to segment the removed points. Since that KNN operations
consume less than 50 MB memory, and thus it does not cause
extra memory usage (which is the maximum memory usage
during the whole system execution).

B. Simplifying Point Clouds using the Random, the Grid, and
the Hierarchy

Different data simplification method generates point clouds
of various characteristics, and thus they affect the segmenta-
tion accuracy. In addition, each simplification method takes
different amount of time to sparsify a point cloud.

Figure 5(a) shows the system segmentation accuracy of
Slimmer when the point clouds are sparsified by the random,
the grid, and the hierarchy. We have the following observa-
tions. (1) The accuracy loss dramatically increases when the
point clouds are sparsified to be smaller than 20% of the full
size. (2) The grid and the hierarchy have smaller accuracy loss
than the random when the simplified point cloud are smaller



80 100

JEPUEEERSSS S

=60 ol » 80 —Random
g, E w0 ~Grid
8 0 —~Random Simplification g 40 Hlera:jl);
=20 —-Grid Simplification = 20 JUNUUSO T g
0 Hierarcy Simplification = 0 o 8900
0 20 40 60 80 100 0 20 40 60 80 100

Simplification Ratio (%) Simplification Ratio (%)

(a) System Segmentation Accuracy (b) Processing Delay

Fig. 5: Study of the random, the grid, and the hierarchy
simplification versus the simplification ratio. (a) shows the
system segmentation accuracy and (b) shows the processing
delay, for each simplification method.

than 60% of its original size. For example, when the point
cloud is simplified to 20% of its original size, the grid and
the hierarchy is more than 3% IOU higher than the random.
(3) When the size of the simplified point cloud is larger than
20% of the original one, the grid simplification is best. This
is counter-intuitive since the simplified point cloud from the
hierarchy is sharper than that from the grid. It indicates that
a pre-trained DNN model “sees” differently from our human
eyes. (4) When the size of the simplified point cloud is larger
than 60%, the grid and the random have similar segmentation
accuracy.

Figure 5(b) shows the data processing time for the random,
the grid, and the hierarchy simplification. We have the fol-
lowing observations. (1) The random simplification takes the
same time to generate a point cloud of different sizes. This
is because that each point is being independently kept. The
random simplification is fastest among all the simplification
methods. It takes about 2.65 ms to generate a simplified point
cloud. (2) The grid simplification takes a linearly-increased
time to generate bigger point clouds. It takes 7.93 ms for 4%
point clouds and increases to 31.40 ms for 95% point clouds.
(3) The hierarchy simplification takes significantly longer time
than the random and the grid simplification. It requires 36.75
ms for generating 5% point clouds and increases to 93.93 ms
for 60% point clouds. Since that data simplifications consume
much less memory than running the DNN model (~10 MB
for the random, ~30 MB for the grid, and ~20 MB for
the hierarchy), the data simplification does not cause extra
memory usage.

C. Applying QoE to Compare Different Combinations of the
Simplification Method and Ratio

We propose a system QoE (Equation (7)) to investigate the
impact of the simplification method, the simplification ratio,
and the KNN configuration. Since K = 1 is optimal for KNN,
in this experiment, we explore the QoE for the simplification
method and the simplification ratio.

The first row in Figure 6 shows the QoE curve of the
random, the grid, and the hierarchy simplifications versus the
simplification ratio when A is 0.2 and 0.7, respectively. We
have the following observations. (1) The QoE curves are con-
vex, meaning that there is a simplification ratio that achieves
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Fig. 6: Leveraging our QoE to investigate various design
factors such as the simplification method and the simplification
ratio. The first row shows the QoE curve for each simplifica-
tion method versus the simplification ratio when the weight A
equals to 0.2 and 0.7 respectively. We use a star sign to indicate
the maximum QoE. The second row shows the corresponding
extra delays because of the data simplification and KNN, and
the reduction of executing the DNN model on the simplified
point cloud than on full-size point clouds, for the case of the
maximum QoE.

the maximum QoE. (2) Different simplification methods have
different QoE curves for the same A. We can compare their
performance based on their maximum QoE values. (3) We
use a black star sign to annotate the point of the maximum
QoE for all the simplification methods for each given A. The
optimal simplification ratio is smaller for larger weight .
This is because large A\ results in more aggressive scheme
to sparsify the point clouds. The second row in Figure 6 plots
the extra processing time for the data simplification and the
KNN, and the reduction of DNN time, for the combination of
the simplification method and ratio that achieves the highest
QoE for each A\. We have the following observations. (1)
The extra processing time of data simplification and KNN
is significantly smaller than the reduction time of running
the DNN model on simplified point cloud than on full-
size point cloud, signifying the effectiveness of Slimmer in
accelerating the 3D semantic segmentation. (2) As expected,
larger A\ reduces more DNN running time because of smaller
simplification ratio that achieves the maximum QoE.

D. Overall System Performance

We evaluate the overall performance of Slimmer versus
weight A for the random, the grid, and the hierarchy simplifica-
tion. Different A\ provide trade-offs between the inference time
improvement, memory usage improvement, and the accuracy
loss.

Table I tabulates the details of the overall performance of
Slimmer. We show for each simplification method the QoE
value, the system accuracy, the accuracy loss, the system



Weight A | 0.00 0.05 0.10 020 030 040 050 060 070 0.80 0.90 1.00

Random QoE 0.000  0.000 0.002 0.022 0.051 0.087 0.133 0.183 0.236 0294 0353 0414

10U (%) 71.18  71.18 7048 68.83 6740 6532 6270 62.70 60.78 58.54 58.54 5541

Accuracy Loss (%) 0.00 0.00 0.98 330 531 823 1191 1191 1461 17.76 17.76 22.16
Time () 4.21 421 372 3.05 275 2.43 209  2.09 1.91 1.73 1.73 1.54

Time Improvement (%) 0.00 0.00 11.69 2747 3461 4221 5037 5037 54.60 5899 5899 63.52
Memory (GB) 2.83 2.83 2.59 2.25 2.08 1.89 1.69 1.69 1.58 1.47 1.47 1.35

Memory Improvement (%) | 0.00 0.00 848  20.73 26.69 3326 4042 4042 4423 4820 4820 5231
Simplification Ratio (%) 100 100 80 60 52 44 36 36 32 28 28 24

Grid QoE 0.001  0.002 0.009 0.032 0.065 0.109 0.156 0.210 0.267 0.326 0.389 0.453

10U (%) 7122 7093 7042 69.62 67.03 66.13 6290 6290 60.85 60.85 58.24 5824

Accuracy Loss (%) -0.06 0.35 1.07 219 583 7.09 11.63 11.63 1451 1451 18.18 18.18
Time () 4.20 3.77 3.38 3.07 2.48 231 1.92 1.92 1.73 1.73 1.54 1.54

Time Improvement (%) 0.15 1049 1958 27.09 41.05 4503 5442 5442 5888 58.88 6344 6344
Memory (GB) 2.90 275 2.57 240  2.05 1.94 1.67 1.67 1.54 1.54 1.41 1.41

Memory Improvement (%) | -2.31 2.94 9.19 1519 27.68 31.53 41.01 41.01 4559 4559 50.38 50.38
Simplification Ratio (%) 97 81 69 60 45 41 32 32 28 28 24 24

Hierarchy QoE -0.030 -0.017 -0.004 0.022 0.056 0.098 0.141 0.192 0246 0307 0370 0.434

10U (%) 69.08 69.08 69.08 69.08 66.07 6607 66.07 6259 5943 5691 5691 5691

Accuracy Loss (%) 2.95 2.95 2.95 2.95 718 7.18 7.8 12.07 16.51 20.05 20.05 20.05
Time (5s) 3.13 3.13 3.13 3.13 242 242 242 202 1.74 1.54 1.54 1.54

Time Improvement (%) 2554 2554 2554 2554 4256 4256 4256 52.06 58.78 6342 6342 6342
Memory (GB) 2.25 2.25 2.25 2.25 1.84 1.84 1.84 1.61 1.44 1.32 1.32 1.32

Memory Improvement (%) | 20.73  20.73  20.73  20.73 3499 3499 3499 4327 4921 5336 5336 53.36
Simplification Ratio (%) 60 60 60 60 42 42 42 33 27 23 23 23

TABLE I: Details of the system performance of the random,

the grid, and the hierarchy simplification versus the weight A.

We highlight the maximum QoE among all the simplification methods for each .

inference time, the inference time improvement, the mem-
ory usage, the memory usage improvement, and the optimal
simplification ratio. We change the weight A from 0 to 1,
where 0 means that we only care about the accuracy and 1
means that we equally treats the inference time improvement
and the accuracy loss. From the table, we can have the
following observations.(1) The simplification ratio decreases
when the weight A increases. For example, the simplification
ratio is reduced to 24% for the random and the grid, when
the weight A equal to 1. With increased weight A, time
improvement and the memory improvement increases, while
the accuracy loss is worsen; (2) We highlight the simplification
method that achieves the best QoE than the others. The result
shows that the grid simplification consistently has better QoE
than the random and the hierarchy. This is because the grid
simplification has high accuracy and the processing delay is
not overwhelming compared to the random and the hierarchy;
(3) Slimmer is an effective framework for accelerating 3D
semantic segmentation. For example, Slimmer reduces 19.58%
inference time, and 9.19 memory usage, with only 1.07%
accuracy loss, using the grid simplification with simplification
ratio of 69%, or reduces 29.09% execution time, and 15.19%
memory usage overhead, with only 2.19% accuracy loss, using
the grid simplification with simplification ratio of 60%. It
is straightforward for Slimmer to provide different trade-offs
between the inference time improvement, the memory usage
improvement, and the accuracy loss, by adjusting the weight.

VII. DISCUSSION AND FUTURE WORK

In this section, we discuss some limitations of our work,
and present future works.

We evaluate Slimmer using the state-of-art 3D semantic
segmentation DNN model and a large-scale indoor point cloud
dataset. Our experimental results show that Slimmer is an ef-
fective framework for accelerating 3D semantic segmentation.
The ScanNet includes more than one thousand point clouds,
and thus it is very diverse and representative. Nonetheless,
we plan to evaluate our framework with different datasets,
such as the Semantic3D outdoor dataset [9]. In addition, we
plan to apply our framework for more models, such as the
Minkowski [22], and explore more data simplification methods
in addition to the random, the grid, and the hierarchy.

To evaluate the QoE of different combinations of the simpli-
fication method, the simplification ratio, and the KNN configu-
ration, we need to pre-define the weight A, and thus identifying
the best combination is not fully automatic. However, we argue
that different application scenarios require different trade-offs
between the accuracy and running overheads, and thus there
is no “best” combination once-and-for-all. Instead, Slimmer
identifies the best combination for each given weight. In
addition, it is straightforward to adjust the weight for system
requirements: larger weight results in more inference time
and memory usage reductions, while the accuracy tends to
be worse.

Last but not least, we plan to develop an AR application
that is built on top of Slimmer as the acceleration engine. The
AR application is preferred to (1) run in at least a few dozen
frames per second for continuous vision [15], [24], [25], which
is challenging as current 3D semantic segmentation takes more
than one second per point cloud; and (2) support collaborative
and persistent AR experience [26]-[28]. Collaborative and



persistent AR is important because it is more likely to lead to
both enjoyable user experience and more frequent usage [27].
Therefore, more research effort is required and more research
opportunities exist for accelerating 3D semantic segmentation
systems.

VIII. CONCLUSION

Slimmer is a generic and model-independent framework to
accelerate 3D semantic segmentation for mobile augmented
reality. By leveraging input data simplification, it can signif-
icantly reduce the inference time and memory usage, while
remaining high accuracy for state-of-the-art DNN models
of semantic segmentation. The key advantage of Slimmer
over the existing solutions is that it does not require any
modifications to pre-trained DNN models. In order to explore
the design space, we propose a QoE metric to quantitatively
compare different combinations of the simplification method,
the simplification ratio, and the configuration of KNN for
segmenting the removed points. By adjusting the weight A,
Slimmer provides various tradeoffs between the inference
time improvement, the memory usage improvement, and the
accuracy loss.
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