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Abstract—Supply chains have become a pillar of our economic
world, and they have brought tremendous advantages to both
enterprises and users. These networks consist of companies and
suppliers with the goal of reducing costs and production time
by offloading various stages of the production process to third
party foundries. Although globalized supply chains offer many
advantages, they are also vulnerable to attacks at many different
points along the pipeline. For Internet-of-Things (IoT) devices,
this problem is exacerbated by firmware vulnerabilities, which
influence the low-level control of the system hardware. Moreover,
according to the National Vulnerability Database (NVD) the
number of firmware vulnerabilities within IoT devices is rapidly
increasing every year, making such firmware vulnerabilities a
cause for growing concern and magnifying the need to address
emerging firmware vulnerabilities. In this paper we attempt
to define and expand upon a class of firmware vulnerability
that is characterized by the malicious configuration of power
management integrated circuits (PMIC). We propose a firmware
attack construction and deployment on power management IC
(FANDEMIC) that involves reverse engineering bare-metal IoT
firmware binaries and identifying the functions that interact with
its PMIC. We demonstrate the possibility of directly altering the
binary to deliberately misconfigure the PMIC such that supply
line voltages are altered, which could result in a variety of
problems with the device. We propose a workflow to reverse
engineer the binary, using Ghidra and Python scripting, and
provide two simple, but novel function matching algorithms. Fur-
thermore, we highlight and discuss the potential aforementioned
consequences of PMIC attacks, in particular, battery degradation
and failure, accelerated aging effects, and sensor data corruption.
As a proof of concept we implement the proposed attack on an
nRF52 microcontroller and a MAX20303 PMIC to demonstrate
sensor data corruption. Finally, we discuss possible mitigation
techniques, which include binary auditing and secure firmware
updates.

I. INTRODUCTION

The increasing globalization of the Internet of Things (IoT)
supply chain over the past several decades has resulted in
major security concerns. In order to keep production costs
low and maintain a fast time-to-market, original equipment
manufacturers (OEMs) rely on a vertically disintegrated supply
chain for production and assembly, exposing themselves to
potential attacks from untrustworthy third party manufacturers

[22]. These potential attacks include hardware trojans, design
modifications, firmware modifications, and malware, all of
which are difficult to detect because of their stealthy design
and the inherent difficulty of locating such alterations early in
the supply chain.

For example, in a recent exploit from December 2020,
FireEye revealed a large scale software supply chain attack,
now known as the SolarWinds hack, that was leveraged to
compromise the U.S. Government and private companies like
Microsoft and FireEye [7]. In this attack, adversaries breached
SolarWinds’ Orion IT management software and sent out
malicious software updates to users, which were used to create
backdoors in user systems since as early as Spring 2020,
going undetected for months [7]. This attack had significant
implications because the Orion software was used by over
33,000 of SolarWinds’ clients [12], demonstrating the high-
impact potential of an indirect attack on the software supply
chain. In the context of the IoT supply chain, it goes without
say that a cunning hardware attack can have similar potential.

Recently, the Department of Homeland Security (DHS)
published a study where they highlight the need to advance
security in the IoT ecosystem in order to provide a robust
defense system against current and emerging threats [5]. The
National Vulnerability Database (NVD) [25] reports newly
discovered firmware vulnerabilities daily, as illustrated in Fig.
1(a), and given the increasing number of IoT devices on-
market [47] and the rapidly increasing severity of IoT firmware
vulnerabilities [25], [40], as shown in Fig. 1(b), it is vital to
expose firmware vulnerabilities and mitigate them before they
become widespread problems and cause irreversible damage.

Unfortunately, the current supply chain model, where third
party manufacturers and assemblers often have access to
the firmware binary or even the source code for testing
purposes, poses a significant threat. This is a major concern
especially in resource-constrained bare-metal IoT devices that
lack operating systems, since there are few, if any, built-in
protections against alterations that an untrusted party might
make. Moreover, any such alterations can go unnoticed even
in the final stages of functional testing. Since these kinds of
devices often have applications in safety-critical infrastructure
like healthcare, public transportation, and environment moni-
toring, any security concerns pose significant threat due to the
implications they have on human lives and their privacy.

We now consider the role of the power management in IoT
devices and its potential effect on device security. As IoT
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Fig. 1: (a) Number of CVEs related to IoT firmware from 2012
to 2020, and (b) Severity scores of these CVEs from 2015 to
2020 according to CVSS V3 reported in the NVD.

technology advances, we observe the increasing complexity
and capabilities of a single IoT device. In order for a single
device to accommodate more and more applications, a myriad
of various components need to be incorporated into it, each one
requiring different power regulation requirements. To handle
the many power needs of a single system, system designers
often make use of specially designed integrated circuits (ICs)
called power management integrated circuits (PMICs) that
manage power supply, power distribution, and battery health.
It is critical for subsystem power requirements to be met, as
even small deviations outside of the allowed ranges can result
in a number of problems ranging from incorrect instruction
execution to outright failure [15], [34].

Given the critical role of the PMIC in modern IoT devices,
there has already been some consideration for targeting them
in hardware attacks. In particular, in early 2020, Tencent
Security demonstrated the possibility of exploiting PMIC
charging controls to cause batteries to combust, creating the
”Bad Power Attack” [30]. Herein, we expand upon the concept
of PMIC attacks they introduced by proposing FANDEMIC, a
firmware attack scheme that targets the power management IC
(PMIC) of IoT devices running bare-metal systems. We focus
our attention on bare-metal IoT devices in this paper because
non bare-metal systems are often equipped with operating
systems that can complicate the reverse engineering process.
We leave such systems for future study. An overview of the
proposed FANDEMIC scheme is illustrated in Fig. 2. To the
best of our knowledge, this is the first time this vulnerability
has been formally classified and had its impacts studied. 1

The contributions of our paper are as follows:

• Demonstrate a vulnerability in bare-metal IoT devices.
• Demonstrate how a firmware attack may change the

operating voltage of a PMIC, disrupting the correct
functionality of its host device.

• Propose a framework to reverse engineer a system’s
binary using cross-correlation function matching and
Ghidra, and to construct and deploy a payload.

• Propose mitigation techniques against the attack.

1We are in the process of reporting this vulnerability to the NVD and NIST.

II. BACKGROUND

Supply chains are constantly evolving, and they have
reached the point where both cost and time-to-market have
been drastically reduced (e.g., just-in-time supply chain), but
this comes with added risks. The vertical disintegration of
supply chains has introduced many more exploitable links
in a given device’s supply chain. In this section we give an
overview of the supply chain system, its security challenges,
and discuss possible attacks.

A. The Modern Supply Chain

Broadly speaking, there are six main stages in the supply
chain: Design, Fabrication, Assembly, Distribution, Mainte-
nance, and Disposal [20]. In addition, there are typically
testing stages associated with each of the manufacturing/pro-
duction steps (Design, Fabrication, and Assembly, shown in
Fig. 2). The design stage encompasses the design of the
device: component selection, schematic design, netlisting,
floorplanning, and all of the other steps that need to be taken
before physical manufacturing can begin. The fabrication stage
involves the processing of raw materials into the components
that will be integrated into the final product. These compo-
nents might be sensors, actuators, processors, printed circuit
boards (PCBs), passive components, or even entire systems-
on-chips (SoCs) that can come from a variety of different
manufacturers, which might have supply chains of their own.
The assembly stage is where all of these components are then
integrated into what will become the final product. This is
where components are soldered to the PCB, the firmware
is loaded, and the device undergoes its final round of tests
before being declared ready and shipped to its final destination.
We consider assembly to be the final production stage, and
the stage FANDEMIC would target, as shown in Fig. 2).
Though it could be possible that the proposed malware would
be vulnerable to detection if there was a testing stage after
assembly, it would depend on the kind of testing performed.
For example, logic verification tests likely won’t be able to
find it since they are only concerned with logic values. On the
other hand, analog probing might be effective if test points
are included in the design and the margins of error on supply
voltages are tight. Following assembly, assuming the device
has passed the final inspection, it enters the distribution stage
in which finished products are distributed from foundries to
retailers then to end users. The maintenance stage encom-
passes customer service, technical support, and repairs for
the products the end user has received. Finally, the disposal
stage refers to how devices that have reached their end-of-
life are processed, recycled, or disposed of, though it is often
disregarded by manufacturers and end users alike.

The electronics supply chain is driven by a ”just-in-time”
or ”lean” manufacturing approach to production since this
approach, when working smoothly, minimizes operating costs
while maximizing production efficiency. Fundamentally, the
idea behind the model is to reduce costs by minimizing
inventory. Now if a component manufacturer is somehow
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Fig. 2: Illustration of a simplified supply chain overview, in which we can see FANDEMIC would attack the supply chain at the
last stage of production, which is the PCB fabrication & assembly, and firmware installation. FANDEMIC has the potential to
cause accelerated aging and wear-out on logic circuits, induce battery failures, which could potentially harm users if the device
itself is implantable (e.g., medical devices like pacemakers), and corrupt sensor data that could result in incorrect readings and
potentially cause failures in the correct functionality of devices.

unable to produce, then the entire process can get bottle-
necked due to a lack of resources/inventory for the next stage,
during which the company cannot sell its products [18]. This
drives companies to turn to other manufacturers to get the parts
they need to stabilize their supply of components [1]. This
diversification of suppliers, combined with the widespread
adoption of lean manufacturing practices, has opened up
supply chains to malicious actors and untrusted foundries, who
offer cheap services, but lack integrity.

B. Supply Chain Security

The primary goal of supply chain security is to provide
trust and assurance for end devices, despite the presence of
untrusted entities in the manufacturing process. [3], [20], [21],
[39], [41]–[43], [46]. From a security engineering perspective,
this boils down to defining system policies, implementing
security mechanisms, specifying assurances, and providing
incentives [29]. Practically speaking, it requires a deep under-
standing and defending against various forms of supply chain
attacks. A supply chain attack is a malicious modification of
a device that occurs at some point in the production stages of
the supply chain. They can typically be classified as either a
board-level attack, in which a physical modification is made,
or a firmware attack, in which the device’s firmware is altered.
They can vary wildly in appearance, tactic, and severity,
and can have many different possible goals, from stealing or
tampering with data, to full-blown device failure.

C. Power Management in IoT Devices

Nowadays, it is common for IoT devices to include a
variety of sensors and components each with specific voltage
needs to operate correctly [48], and PMICs have been widely
used to manage the multiple voltages required. These ICs
are solid state devices that control the flow and direction of
electrical power, and common functionality includes DC-to-
DC conversion, voltage scaling, and power-source selection.
PMICs incorporate several functions (e.g., power conversion,
under-voltage, etc.) into one chip, helping reduce the amount
of space otherwise required and having better heat dissi-
pation. Moreover, in order to accommodate many possible
power requirements, many PMICs in modern systems are
programmable, allowing device developers to configure them
on an as-needed basis. As already implied, this is something
of a double-edged sword.

D. Firmware Attacks

Firmware and hardware attacks are major threats to embed-
ded systems. While hardware attacks require physical access
to a device, and comparatively more effort than firmware
attacks, the consequence of a hardware attack could be drastic.
Unlike firmware vulnerabilities, that could be patched via
software updates, patching of a hardware vulnerability would
require re-manufacturing the hardware, costing a major loss
to the vendor. On the other hand, firmware vulnerabilities
are low hanging fruits that could be majorly targeted by
attackers to create threatening exploits. FANDEMIC presents
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the exploitation of a firmware vulnerability to manipulate
PMIC configuration and disrupt system operations.

Firmware interacts directly with hardware components and
serves as a storage location for sensitive information. This
low-level software component can become a single point of
failure as it could lead to the compromise of an entire de-
vice. However, though firmware attacks can yield devastating
consequences, research shows that firmware is commonly left
unprotected. In a March 2021 report, Microsoft reported that
80% of 1,000 interviewed businesses experienced at least one
firmware attack over the past two years, yet only about 30%
allocated funds for firmware protection in their budgets [37].
This issue coupled with the challenge of verifying firmware
integrity are important motivations for this work.

Given the nature of the modern supply chain network,
firmware can be tampered with at multiple points along the
network. One of the dangers of the supply chain when it comes
to firmware is that firmware can be compromised even before
a device is deployed in the market. Consumers must trust
that devices are legitimate and contain legitimate firmware
when they purchase them, but that cannot be guaranteed by
device vendors. A malicious insider could potentially tamper
with firmware, thereby compromising the integrity of the final
product before it is even on the market. There are multiple
attack vectors attackers can leverage to compromise firmware
in the supply chain. The main vectors relevant to this work
are as follows: 1) Physical Access; 2) Counterfeit Devices; 3)
Over the Air Updates; and 4) Third Party Software Libraries.

A common practice in software development is the use of
software libraries to facilitate the code writing process. Such
libraries are publicly available, and some have known vulner-
abilities, which is is a major issue [4]. A serious disadvantage
of the supply chain is the magnification of vulnerabilities as
they spread across the technology landscape. Furthermore, the
proliferation of IoT devices in the past few years has come
with an increasing attack surface. Just recently, researchers
at JSOF, a boutique cyber consultancy firm, discovered a set
of 19 zero-day vulnerabilities in a common low-level TCP/IP
software library [13]. Collectively known as Ripple20, the
vulnerabilities affect ”hundreds of millions” of IoT devices
from a plethora of vendors [13]. The software library devel-
oped by Treck Inc. has a large footprint, so the naming of
the vulnerabilities correlates with the ripple effect of a single
vulnerable component spreading outward in the supply chain
across vendors, fields, companies, etc.

A major challenge with firmware attacks is the challenge
of detecting firmware modifications. As long as a device
functions as intended it can be very difficult to detect a
compromise [4]. In addition, hardware may not contain any
protection for firmware, especially considering the growth of
low-cost devices which may neglect security for lower cost.
Still, the presence of firmware protection does not mean a
device is secure [27], [28], though it is better to have some
protection than no protection at all. Thus, one of the main goals
of this work is to modify firmware without altering the overall
function of a device, thereby making the attack less likely to

detect. The scenario ”without altering the overall function”
considers that the device’s core functionality is not affected
in any direct way. While there are some changes, since the
device should retain its original behavior, it becomes harder
to determine whether something is wrong during subsequent
testing. For example, in the context of hardware testing, a
digital logic verification stage that tests the communications
channels present on the device, issues with the device would
not be detected, since it is power lines that are being affected.
Hence, less likely to be detected. The aim is to demonstrate
the threat posed by supply chain firmware attacks.

E. Reverse Engineering and Ghidra

A major component of the proposed attack is binary reverse
engineering. In our attack model (Subsection III-A) we assume
the attacker has access to the raw firmware binary, but not the
source code. The attacker aims to alter the original binary
and produce a malicious version of it, which is a difficult
problem because a raw binary is harder to alter directly as
small changes may cause a big impact, potentially breaking the
entire program. In order to make these changes successfully,
the attacker needs to reverse engineer the binary to acquire a
deep understanding of it, which is required to carry out subtle
alterations so the attack is not easily detected. Software reverse
engineering is a highly active field, where a significant number
of useful tools used to extract information from raw binaries
exist. For this paper we make heavy use of Ghidra to facilitate
reverse engineering as it is capable of binary decompilation,
disassembly, and static analysis [6], [23].

Ghidra was originally a reverse engineering tool developed
and used exclusively by the NSA until it was released and
made open source to the public in 2019 [23]. It has a broad
range of capabilities for static analysis including disassembly,
reliable decompilation, and a plethora of other visualization
and analysis tools [6]. It is also scriptable in Python and Java
(though Python scripts rely on the aging Python 2.7) and is
extensible via Java-based plugins.

III. PROPOSED FANDEMIC

Our proposed supply chain attack consists of reverse en-
gineering the target system’s firmware binary to identify
the functions that control the power management integrated
circuit component and use them to slightly alter its operating
voltage. Once these functions have been identified, the attacker
modifies the binary (i.e., patches the binary), and deploys it on
the supply chain where it is unwittingly flashed to the target.
The attacker is motivated to target the PMIC because it is
well-known that operating devices at incorrect supply voltages
can induce logic circuit wear-out, battery failure, and data
corruption among other effects, all of which are uncommon
effects that the attacker may want to exploit.

A. Attack Model and Implementation

The objective of our proposed FANDEMIC attack frame-
work is to produce unintended/abnormal system behavior by
manipulating a device’s power management integrated circuit
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Fig. 3: Overview of the FANDEMIC attack flow. Before beginning the attack, the target device is chosen and original firmware
is obtained. The FANDEMIC attack starts with reverse engineering the binary to determine PMIC configuration information.
The next stage is firmware modification, and the final stage is firmware deployment.

(PMIC). In theory, the attack on the PMIC could be carried
out via hardware or firmware attack. A hardware attack with
lasting effects past the context of the supply chain would
require hardware modifications with very few degrees of
freedom and is substantially dependent on the targeted device.
Instead, FANDEMIC focuses on firmware as its attack surface,
due to the advantage of the attack surface being less physically
invasive and having more flexibility during implementation. A
detailed outline of the attack can be found in the appendix in
the form of an attack goal tree, and a high-level overview of
the attack flow can be seen on Fig. 3

1) Assumptions: To appropriately evaluate the proposed
attack, several assumptions about the system were made.

a) Attacker is an entity within the device supply chain:
A major assumption that we make is that this attack occurs
at the supply chain level, where the attacker is likely to be
an employee of a 3rd party foundry or OEM involved in the
device’s production. In particular, the attacker is at one of the
end stages of the supply chain, where the device hardware is
already assembled and ready for firmware. In such a scenario,
the attacker does not have any control over a specific device,
but instead the attack can be targeted to all produced devices.
In this case, the goal of the attacker is to cause harm to the
vendor itself (e.g., economic damage). Alternatively, the attack
could target a single device by injecting the malicious firmware
during an insecure firmware update. The fact that the attack
occurs within the supply chain will become justification for
several other assumptions we make for this attack.

b) PMIC is present on target device: Trivially, the attack
targets a device’s PMIC, so it is only applicable to devices
on which a PMIC is present, which is the case in many
IoT devices, as the PMIC is necessary to manage power for
a variety of sensors and actuators commonly used in such
devices.

c) PMIC is external to device processor: We assume
that the PMIC is a separate chip from the main processor,
this assumption is not strictly necessary depending on the
circumstances. It is becoming common for processors to be
integrated with peripherals onto a single chip, called a System-
on-Chip (SoC). However, despite the recent shift towards

SoCs, many OEMs continue to design devices in a modular
fashion, so companies like MAXIM Integrated still heavily
market PMICs as isolated chips. Furthermore, our approach
does not necessarily preclude one from conducting a similar
attack against an integrated processor-power management unit
(CPU-PMU), as the integrated PMU still needs to be con-
figured and programmed. Hence, though some assumptions
might require alteration, the PMIC attack can be adapted to
work against even integrated SoCs. However, that is not the
focus of this work.

d) PMIC is digitally configurable via chip-to-chip com-
munication protocol: This class of attack targets PMICs of
considerable sophistication that are becoming more typical in
consumer IoT devices like smartwatches. Such PMICs need
to have an interface that the processor can use to set power
configurations for the device. We assume that this interface is
a standard chip-to-chip communication protocol like I2C or
SPI. This assumption might be generalized to encompass any
digital logic interface, but we constrain it as a demonstration.

e) PMIC and Processor’s datasheets and reference man-
uals are publicly available: In order to reverse engineer
and alter the firmware binary, the information pertinent to
programming both the PMIC and processor is needed. This
assumption holds in the vast majority of cases because any
consumer-available component must have a datasheet for
customer reference, as it is necessary for circuit designers to
design the device in the first place.

f) IoT device is running on bare-metal: Our attack targets
processors with bare-metal firmware, so we assume there is
no higher-level operating system above hardware abstraction
layers like development libraries and APIs. This sets our attack
apart from typical IoT firmware attacks that aim to exploit
OS vulnerabilities, though the PMIC attack can possibly be
adapted to target the hardware abstraction layer that most
operating systems are implemented on top of.

g) Malicious binary is the initial flash: Once a malicious
payload is constructed, the attacker needs to be able to deploy
it. In our model, the attack occurs at the end stages of the
supply chain where the device will first receive its firmware.
We assume that the attacker (the untrusted third party OEM) is
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responsible for the initial flash and has the means to flash the
malicious binary instead of the intended original. This ensures
that the payload can be deployed.

It is also possible to deploy the firmware after the initial
flash in cases where:

1) No firmware integrity or source authentication checks
are implemented in the system.

2) When integrity or authenticity checks are implemented,
but vulnerable to exploit.

It must be noted that if the integrity and authenticity validation
has a robust implementation, it becomes harder for the attacker
to exploit the vulnerability.

h) Binary access has been achieved: Access to the
original firmware is given. It may be due to the firmware
being provided by the creator, or it was accessed due to a
vulnerability in the system.

More assumptions may become necessary depending on
the device and the approach taken to reverse engineer. In
our implementation of the attack, for example, we will make
several other assumptions (described in Section III-B2) with
respect to the presence of manufacturer-provided APIs.

2) Attack Stages: In order to satisfy assumptions, we im-
plicitly have an initial Target Selection Stage, during which
hardware information is gathered about the target device
and the original firmware binary is obtained. In particular,
the target processor architecture and the target PMIC model
needs to be determined. This initial stage also encompasses
a collection of any hardware or software tools the attacker
might need for the attack development (e.g., firmware libraries,
development and evaluation kits, test devices, etc.).

The attack consist of 3 main stages:
1) Firmware Reverse Engineering: program behavior is

determined from the firmware binary
2) Binary Rewriting and Payload Construction: malicious

binary is constructed by modifying original firmware
3) Payload Deployment: malicious binary is uploaded to

device
These stages will be further detailed in following sections.
3) Attack Platform and Setup: To implement this attack,

the Nordic nRF52832 microcontroller (MCU) and MAX20303
power management IC (PMIC) were selected. The configura-
tion of the PMIC is controlled by the MCU via an I2C bus. We
test our reverse engineering methods on three sample binaries
created within our group that have different purposes: com-
munication with the PMIC, data collection from an MPX2010
pressure sensor, and a smartwatch application. As mentioned,
we make use of Ghidra for reverse engineering, as well as a
number of custom scripts and tools written in Python.

4) PMIC Configuration: The configuration process of the
PMIC plays a major role in determining how to go about
reverse engineering. Since the configuration process is defined
by the PMIC manufacturer, there will be a standardized
method for interfacing with the unit, that is likely to yield
certain patterns in the firmware like I2C reads and writes. For
the MAX20303 PMIC used in our implementation, in order to

configure the PMIC, the processor must first send a command
identification value to the PMIC. It tells the PMIC what
function, like the buck or boost converter, will be configured.
Then the processor sends 4 pairs of values that specify the
address of the register to write to, as well as the value to write.
After finishing the transmission, the PMIC responds with an
ACK bit that confirms the success of the transmission, and
the received values will be written to its internal registers.
Because this process is well defined, the firmware author must
follow this convention and is therefore likely to hard-code
configuration values with some spatial locality that will be
reflected in the binary, which can be exploited during reverse
engineering. I2C library functions must also be used, which
can be leveraged to narrow down the possible areas of the
binary where configuration happens.

B. Reverse Engineering

Once access to the firmware binary is achieved, the next step
is to reverse engineer it. Per the objective of FANDEMIC, we
need to reverse the binary to identify the functions responsible
for performing data transactions with the PMIC chip. The
identification of such functions would help trace the exact
registers, instructions, and addresses where the binary can
be modified to change PMIC behavior. To achieve this, we
attempt a variety of methods including static analysis, function
matching, and symbolic execution, ultimately succeeding in
our implementation using function matching. Note that there
many ways in which one can go about reverse engineering a
given binary for the information we are looking for, not all of
which will work. As the saying goes, ”there is no silver bullet.”
In this work we highlight the method that worked for us, binary
function matching, which we believe to be flexible enough to
be adapted to other platforms, despite its assumptions. Section
III-B3 outlines additional methods for function matching that
did not work in our test cases, but we believe have potential
with further effort or in other scenarios.

1) Static Analysis: In static analysis, the structure of the
binary is examined without runtime information. While there
are many tools available that can automate portions of static
analysis, there are too many variables to consider for all
stages of analysis to be fully automated, because of this a
considerable manual effort is needed as well. Moreover, since
the attacker’s goal is to write a malicious version of the
firmware, it is in their best interest not to rely too heavily on
automated analysis, as the tools can make assumptions that
might be invalid. Nonetheless, to the extent possible, analysis
tools should be used where convenient.

To perform static analysis, we make use of Ghidra. Ghidra is
unable to do out-of-the-box analysis of the binary without ad-
ditional information like the instruction set architecture (ISA)
and device memory map, which can be obtained from the
processor datasheet. The datasheet contains useful information
like the address of the reset handler, address of flash mem-
ory, addresses corresponding to peripherals and corresponding
register configurations, which can also be given to Ghidra
to enable more detailed manual analysis. Once the necessary
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information is provided, Ghidra performs some basic, semi-
automated static analysis, disassembling the binary, locating
functions and basic blocks, and generating cross references and
control flow graphs. The disassembly and cross references are
crucial for the manual static analysis involved in reconstructing
the control flow and identifying instruction patterns.

At this point, it is useful to identify the main function’s
location, as it initiates all operations in bare metal firmwares.
The details of how this is done will vary depending on the
microcontroller’s architecture, but since all microcontrollers
must be able to execute the main function the steps will be
similar to what is done on the Cortex-M4 architecture, which
we used in our implementation. The first step is to locate
the Reset handler in the binary. According to the Cortex-M4
Generic User Guide, the Reset Handler address is the second
entry of the Interrupt Vector Table, which is located at the
start of the binary by default [19]. As the Reset Handler is
implemented by the compiler, we compile a blank firmware
binary to analyze what the Reset Handler does by inspecting
the objdump of the ELF file. The Reset Handler itself calls
another built-in function: mainCRTStartup which does
device initialization, followed by invoking the user main
function. As this function is implemented by the compiler,
it is generated algorithmically, and thus can be relied upon to
locate the address of the main function.

Having identified the main function, the next step is to
identify the function calls responsible for communication with
the PMIC. The function call graph is generated in Ghidra for
visualization. In the call graph, we can observed what the
main function (i.e, FUN00002a6c) is internally leading to, and
further analyzed.

Since Ghidra’s cross references work in both directions,
we are able to determine where these function calls are by
locating the function definition in the binary. By assuming that
these function calls are made to library functions provided by
the device manufacturer, we can locate these definitions using
binary source code function matching techniques.

2) Function Matching: We are able to determine con-
figuration information using binary similarity-based function
matching if we make certain assumptions about the target
firmware: (1) the PMIC’s configuration information is hard-
coded in the firmware, (2) the PMIC is configured using
a chip-to-chip communication protocol like I2C or SPI, (3)
firmware relies on manufacturer-provided libraries for chip-
to-chip communication, (4) these libraries are open source,
(5) an attacker can compile libraries on any available OS and
with any possible optimization. Note that although we have
now accumulated a number of assumptions, most of these
represent the common case in embedded system development
and should not disqualify our methods.

With these assumptions, we created a representative
firmware binary for the same target processor and forced
the inclusion of the chip communication library functions
at compile time. Since we created this firmware ourselves,
we can view the unstripped ELF file with objdump and
use the symbol information to locate critical functions that

implement data transfers. As an example, on the nRF52,
I2C communications are initiated with one of two library
functions: nrfx twi xfer or nrfx twim xfer, depending on the
way the firmware is configured. After obtaining the offset
and length of the function definition, we then extract the
function binary for comparison against the target firmware. To
carry out this comparison, we perform two simple matching
algorithms based on cross-correlation to locate the function
in the firmware’s binary. Note that this is only possible if
the compiled binary in the firmware is considerably similar to
the binary that we compiled ourselves. We assert that the 5th
assumption stated above will ensure a reasonable likelihood
that this is the case, as the firmware is likely to have been
compiled by an accessible OS and optimization level. There
may be many possible permutations of compilation platforms
and flags, but these can be explored fully via grid search
provided sufficient time. The offset of the peak value of the
cross correlation between the firmware binary and function
binary, treated as signals, shows the location of the function
in the firmware binary. Once this information is obtained, the
function can be located in Ghidra and cross references to the
function address can be used as starting points to manually
back-trace to the hard-coded configuration values.

We have implemented 2 function matching algorithms in
Python that use binary cross correlation and instruction cross
correlation respectively. In the former, we treat the binaries
as non-return-to-zero (NRZ) signals, converting 0’s and 1’s
to -1’s and +1’s respectively. In this case, the correlation is
defined as

Corr(f, g)[n] =
∑

f [k]g[k + 8n]

where f ang g are NRZ signals and the resulting correlation
is an array. This formulation can be thought of as a rolling
dot product. Note that since we are working with byte-aligned
firmware binaries, the shift value is 8n in order to keep the
resulting correlation byte-aligned. If the lengths of the signals
are mismatched, the shorter one is zero-padded so that it
will not interfere with the mathematics of the correlation. By
design, high values in the cross correlation will denote regions
of high similarity with the searched-for function [35], with a
peak value equivalent to the length of the shorter signal if
present verbatim in the longer signal. Thus, if the peak value
of the cross correlation is some high fraction of the length
of the function binary, we can reasonably conclude that the
function is probably defined in the firmware with an offset
proportional to the argmax of the cross correlation.

In the instruction-based implementation, the same princi-
ple is applied, but with disassembled instruction mnemonics
instead. The specific implementation presented in this paper
might not work in some cases, but serves as a demonstration.
In this method we use strings rather than signals, and redefine
the inner product as the sum of element-wise comparisons, in
which the comparison yields +1 if the strings are the same, -1

7



if they are different, and 0 if either string is empty.

Comp(s1, s2) =


+1 if s1 = s2

−1 if s1 6= s2

0 if s1 or s2 is empty

Corr(f, g)[n] =
∑

Comp(s1[k], s2[k + n])

The shift n refers to the instruction offset. Since we are
mostly working with Thumb 2 instructions, for convenience,
we assume that all instructions are 2 bytes long, and n
correspond to 2-byte shifts. Hence any peak index given by n
would actually correspond the byte offset 2n. We are aware
that there are inaccuracies introduced, because this assumption
is technically invalid when applied over the entirety of the
firmware, however, when most of the firmware consists of
Thumb 2 instructions, because of the mathematics of cross
correlation, the inaccuracies of the blanket application of 2-
byte translation will not be significant, as the summation
over all the matches should still result in a peak because
of self-correlation when the function is present in the target
firmware. The argument for using this formulation of cross
correlation is that different compilers might optimize operands
differently (for instance r7 instead of r8) while the instruction
opcodes might be the same. In our implementation, since only
operation mnemonics (which correspond directly to opcodes)
are considered, differences in operands will not cause the
correlation to drop as it would with cross correlation of
binaries directly.

Note that neither of these methods for function matching
have been tested exhaustively and only are crude attempts at
function matching. Function binary and source code matching
is an active area of research with many more advanced
techniques than those presented here. Sophisticated techniques
can make use of neural networks [45], control flow graph
and call graph analysis, as well as better techniques for
computing binary similarity than cross-correlation [14], [17].
Nonetheless, the aforementioned methods implemented here
will work provided the specified assumptions are satisfied as
is the case in our examples and have the advantage of being
simple to use and understand.

We employed these methods on 2 of our firmware exam-
ples (sensor reading and smartwatch) and found the function
locations at 0x21AC and 0xC6E4 for the sensor firmware and
smartwatch firmware respectively. The results can be seen in
Figure 4, where the peaks represent the function of interest.

Once the binary function definitions have been located in
the firmware, we return to Ghidra and directly analyze their
offsets. As we have already located the main function, Ghidra
is able to disassemble the functions of interest and generated
cross references to calls from the main. We then go through
these cross references one by one and manually backtrace the
calling parameters for values that might be used to configure
the PMIC. These values should be documented in the PMIC’s
datasheet due to having some significance for configuration,
and search functions can be used to help locate them. Note
again that this process is applicable only if the values are

Fig. 4: Cross Correlations of Function Binaries and Instruc-
tions for 2 firmware examples using different library functions
for I2C communication. The correct byte offset should be
0x21AC and 0xC6E4 in firmware 1 and firmware 2 respetively.

actually hard-coded in the binary and not obfuscated, though
we believe this to be true in many cases. Once done with this
process, and having found the configuration values to modify,
the attack moves into the next stage: binary rewriting and
payload construction.

3) Alternative Approaches:
a) Cross Referencing Peripherals: Besides the previ-

ously mentioned approach, an alternative approach is to cross
reference memory-mapped peripheral addresses directly with
Ghidra. Referring to the processor memory map can help
locate functions responsible for peripheral control. In bare
metal firmware, the processor interfaces with peripherals by
reading and writing to a set of memory addresses associated
with a given peripheral. These memory locations are specified
in the processor datasheet and can be loaded into Ghidra for
cross referencing [32]. Loading the memory map to Ghidra can
be performed manually or automated via SVD-loader [36] or
other Python or Java script.

Once the memory map is loaded into Ghidra, we examine
all cross references made to memory addresses associated with
the communication peripheral used to configure the PMIC. In
our proof of concept, we target the MAX20303 PMIC chip,
which the MCU configures via I2C. Thus, we examine the set
of addresses associated with the Two-Wire Interface (TWI)
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peripheral that the nRF52 uses to implement I2C transfers.
Referring to the datasheet, we find that the TWI peripherals
are mapped to 4 KiB memory blocks with base addresses at
0x40003000 and 0x40004000.

Once these addresses are loaded to the memory map, Ghidra
automatically generates cross references from the previously
disassembled instructions if an instruction directly references
one of the mapped addresses. However, if the peripheral
addresses are not directly referenced— for instance if the
address is accessed via a pointer stored on stack, or offset
from a register— then Ghidra will not be able to locate
peripheral functions and another method must be employed.
Another potential issue is that simply locating the function that
interfaces with the peripheral may not reveal the configuration
information, which was the case in our implementation.

Though we were able to locate the function that accessed the
peripheral addresses, this function turned out to be an Inter-
rupt Handler invoked asynchronously at runtime. Because of
this, it becomes prohibitively difficult to backtrace parameters
statically. Though library functions were used to initiate I2C
transfer and would have conceivably been invoked from the
main function, these API calls relied on the interrupt handler
to actually interact with the peripherals. Hence, we were able
to locate this handler, but were unable to locate the API calls
that passed the PMIC configuration information. While we
were unsuccessful with this method, we have included it in our
attack description nonetheless as it may have proven effective
in other scenarios. Our test case only represents one of many
possible combinations of processor, library, and PMIC, which
may implement communication in different ways. If another
processor’s API were to implement communication with direct
peripheral accesses, this method may have been more useful.

b) Dynamic Analysis: If hardware is available to test on,
dynamic analysis may be helpful for determining configuration
information that exists at runtime. Using the GNU Debugger
on an actual processor allows us to track stack changes and
other dynamic information that can help isolate the sections of
the code that control chip communication or configuration. Of
the outlined approaches, a full dynamic analysis is the hardest
to conduct due to the necessary hardware dependencies that
live debugging requires. In a real-life scenario, an attacker may
not have access to hardware debug ports, or have access to
hardware at all. Dynamic analysis might be conducted via full
system emulation with frameworks like Renode or Unicorn,
but such analysis is out of the scope of this paper and left for
future research.

C. Binary Rewriting and Payload Construction

During the Reverse Engineering stage the location of any
relevant configuration values should have been determined. At
this point our goal is now to modify these values. Before the
attack can be carried out, we need to determine the binary’s
format as the final format will determine the best approach to
modifying it. A raw binary might call for a simple hex editor
like Rizin, an ELF file might be best patched in Ghidra, and
an Intel Hex file might be easiest to edit directly in a text

editor. In our example, the nRF52 is programmed with Intel
Hex files, so the easiest method to produce a payload with
that format is described in the following subsection.

1) Rewriting Intel Hex Files: The Intel Hex (IHex) file
format stores the binary in ASCII form, where bytes take
on their hexadecimal representation. Each line of the file
is called a ”HEX record” and has 5 fields: the first 2 hex
characters encode the number of data bytes in the record,
the next 4 characters represent the starting address of the
record’s data, then another 2 characters that indicate the record
type, followed by the data field. The last field is the record’s
checksum, which is the two’s complement of the 2 lowest
bytes of the sum of all the preceding hex digit pairs [11].
As indicated by the type field, there are records of different
types that carry additional information that the processor might
use on startup, like the starting address and segment infor-
mation. Most reverse engineering tools available are capable
of writing Intel Hex files since the format is straightforward,
however, there are often small variations in the exact way
the binary is written that can result in significant differences
when comparing the modified version to the original. Most
significantly, since each record has a data field, record lengths
can vary, resulting in very different IHex files, even if the
binaries they encode are the same. Thus, in order to avoid
unnecessary differences, it is more simple to edit the original
binary directly using any standard programmer’s text editor,
since the format encodes the binary as ASCII automatically.
To modify an IHex firmware, the attacker needs to change
the data at the located addresses, recompute the checksum
for each modified record, and overwrite the old one. Directly
overwriting values minimizes the number of modified bytes,
since record data lengths are preserved. Manually editing IHex
files can be tedious, therefore a Python script was written
to make such in-place data edits, without modifying record
lengths the way most other IHex editing tools do. Additionally,
carrying out the edits in this manner makes the modification
portion of the attack script-able, such that given the offsets
to modify, and the values to write, the script is able to make
the edits automatically, and multiple firmware versions can be
generated quickly.

D. Payload Deployment

Deploying the payload is the final stage of the attack. At this
point, the attacker needs to load the firmware onto the target
device, for which very few options are viable. Fortunately (or
unfortunately) in the context of the supply chain, it should be
relatively easy for an attacker at the final stages of the device’s
production to have access to these options along with the initial
firmware flash, yielding the highest likelihood of success since
on-board security measures are not likely to be active yet,
and the foundry is likely to have the equipment necessary for
loading the binary on hand. Following that, depending on the
device’s original purpose, other methods may be employed.

1) Initial Flash: In our example, we assume the attacker
has access to the necessary tools to carry out the attack
as previously mentioned. Hence, we deploy the modified
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Fig. 5: Basic Hardware Schematic for Example Sensor Appli-
cation. Only shows used pins on the nRF52 and MAX20303.

firmware by following the normal procedures for flashing
firmware, using the modified Intel Hex file instead.

2) Runtime Updates: Another approach to deliver the pay-
load is taking advantage of firmware updates. Some devices are
capable of runtime firmware updates in which new firmware
can be loaded over-the-air via Bluetooth or Wifi, or via
traditional wired methods. If such a capability is in place, the
attacker may be able to exploit these capabilities to deliver
the malicious firmware, if the update protocol is insecure, or
if the OEM has update authentication credentials. Though we
do not implement these in this project, other researchers have
explored this area [4], and we believe it would be applicable
to the proposed attack as well.

3) Flash Memory Attack: Firmware are stored either in
external or the internal flash memory. If an attacker has
physical access to the device, the firmware could be extracted
from memory, maliciously patched and flashed back. In the
case when firmware is stored in external flash memory, the
attacker can deploy the payload by modifying the data of the
external flash memory if it is not write protected. In the case
of internal flash memory, if the device has accessible debug
ports like JTAG or SWD, the attacker could exploit that to get
access to internal flash memory and deploy the payload.

4) Firmware implementation bug exploitation: In some
cases, attackers exploit the existing implementation bugs in the
firmware to deploy the payload. These bugs include memory
bugs, authentication bypass, vulnerability in the third party
library, web/mobile application bugs, input sanitization bugs,
and similar other flaws that can be exploited to perform attacks
like cross site scripting (XSS), buffer overflow, and remote
code execution to deploy the malicious payload.

IV. RESULTS

A. Sensor Firmware Example

In order to verify the effects of the attack, we implement a
simple sensor application using the nRF52832 microcontroller,
MAX20303 PMIC, a MPX2010DP ratiometric pressure sen-
sor, and LMC6084 operational amplifier. The circuit diagram
is shown in Figure 5. The nRF52 connects pins 26 and 27 to
the PMIC as the I2C controller, and GPIO pin 25 to PFN1,
which needs to be brought low to enable configuration of the

PMIC. Pin 28 on the nRF52 is an analog input pin that is
used to read the output of the sensor circuit as a digitized
voltage. The MPX2010 is a ratiometric, differential pressure
sensor with a normal operating voltage of 10V, but can be
supplied with less if the static sensitivity is adjusted in pressure
calculation to take this into account. Since the raw voltage
output of the sensor would be far too small for the nRF52 to
reliably detect, the differential gain stage is added after the
pressure sensor to amplify the output to a detectable range.
The gain is around 1068, chosen based only on the available
on-hand components. Though the PMIC would normally use
a battery as it’s main power source, we instead attach a power
supply unit that provides a constant 4V. This is enough to
supply the 2nd buck converter on the PMIC (Buck2), which
has an output range of 0.8V to 3.95V, and a configuration
resolution of 50mV.

The original firmware configures the Buck2 supply pin of
the PMIC to output 2.9V, then begins collecting data from the
ADC pin. The collected voltage data is converted internally to
pressure using the following equation:

P (Vout) =
Vout

GK2.9V

where G is the gain and K2.9 is the static sensitivity of the
pressure sensor at 2.9V, calculated as:

K2.9V =
(

2.5
mV

kPa

)(2.9V

10V

)
= 0.725

mV

kPa

A button interrupt can pause and resume data collection. Our
goal in implementing this attack is to reverse engineer the
resulting binary, modify it without using the original C source
code, then show that the modified binary can be flashed
to hardware and affect the function of the application. The
steps for the attack have been described in previous Sections
III-B, III-C, and III-D. Following the processes outlined, we
reverse engineered the binary to locate the Buck2 configuration
information, which was hard-coded as an array. We then
modify the Buck2 configuration bytes and the checksum for
the corresponding record, which can be seen in Figure 6.
This process is repeated several times with the supply set at
multiple different voltages, producing new firmware files with
our script and re-flashing the firmware each time to examine
the resulting changes in supply voltage and sensor output. This
data is summarized in Table I and plotted in Figure 7. The
pressure being measured is the barometric water pressure at
the bottom of a small manometer. A diagram can be seen in
Fig. 7.

V. DISCUSSION

The usage of a PMIC chip to manage power in various
range of devices could be a potential attack vector. It could
be prone to both hardware and firmware based attacks. The
proposed FANDEMIC attack clearly highlights the affects of
a successful PMIC attack on device operation and behavior.
The bad power attack by researchers from Tencent Security
Xuanwu Lab [16] as mentioned in the article [30] shows the
threatening and major impact on the fast charging feature by
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sensor_2-9V.hex
0000 BBE0: 38 30 30 30 30 43 33 0D 0A 3A 31 30 34 32 44 30 80000C3. .:1042D0
0000 BBF0: 30 30 33 34 38 36 30 30 30 30 34 38 38 36 30 30 00348600 00488600
0000 BC00: 30 30 30 30 32 41 32 36 30 31 35 43 38 36 30 30 00002A26 015C8600
0000 BC10: 30 30 32 33 0D 0A 3A 31 30 34 32 45 30 30 30 32 0023..:1 042E0002
0000 BC20: 38 30 30 30 30 32 30 35 30 38 37 30 30 30 30 41 80000205 0870000A
0000 BC30: 34 38 32 30 30 30 30 38 43 38 32 30 30 30 30 37 48200008 C8200007
0000 BC40: 42 0D 0A 3A 31 30 34 32 46 30 30 30 32 43 38 38 B..:1042 F0002C88
0000 BC50: 30 30 30 30 41 34 30 46 30 30 32 30 30 38 38 38 0000A40F 00200888
0000 BC60: 30 30 30 30 32 34 30 30 30 30 32 30 36 33 0D 0A 00002400 002063..
sensor_3-9V_hack.hex
0000 BBE0: 38 30 30 30 30 43 33 0D 0A 3A 31 30 34 32 44 30 80000C3. .:1042D0
0000 BBF0: 30 30 33 34 38 36 30 30 30 30 34 38 38 36 30 30 00348600 00488600
0000 BC00: 30 30 30 30 33 41 32 36 30 31 35 43 38 36 30 30 00003A26 015C8600
0000 BC10: 30 30 31 33 0D 0A 3A 31 30 34 32 45 30 30 30 32 0013..:1 042E0002
0000 BC20: 38 30 30 30 30 32 30 35 30 38 37 30 30 30 30 41 80000205 0870000A
0000 BC30: 34 38 32 30 30 30 30 38 43 38 32 30 30 30 30 37 48200008 C8200007
0000 BC40: 42 0D 0A 3A 31 30 34 32 46 30 30 30 32 43 38 38 B..:1042 F0002C88
0000 BC50: 30 30 30 30 41 34 30 46 30 30 32 30 30 38 38 38 0000A40F 00200888
0000 BC60: 30 30 30 30 32 34 30 30 30 30 32 30 36 33 0D 0A 00002400 002063..

Fig. 6: Byte difference in the Intel Hex files for the original
firmware (above) with Buck2 set at 2.9V, and the modified
version (below) with Buck2 set at 3.9V. First difference
changes the configuration, second difference is the checksum
for the record.

Config VSupply D[VOut] VOut Pressure (Pa) % Error

0x10 1.60 545 0.48 618.44 44.04
0x15 1.85 635 0.56 720.99 34.77
0x1C 2.20 710 0.62 805.54 27.12
0x22 2.50 810 0.71 919.40 16.81
0x26 2.70 941 0.83 1068.09 3.36
0x2A 2.90 974 0.86 1105.23 0.00
0x2C 3.00 1043 0.92 1184.12 7.14
0x32 3.30 1161 1.02 1317.43 19.20
0x37 3.55 1211 1.06 1374.38 24.35
0x3D 3.85 1371 1.20 1556.19 40.80

TABLE I: Table of sensing stage outputs averaged over 100
samples with a sampling period of 100ms. The original setting
and reading is highlighted in yellow.

Fig. 7: Sensor output voltage, pressure reading, and pressure
error relative to the original voltage of 2.9V (arbitrary), all as
a function of the supply voltage. The slope of the dashed red
fit regression line is 414.73 Pa/V and the slope of the dashed
orange regression line is 0.321 V/V.

maliciously patching the PMIC firmware. Apart from physical
damage, the malicious firmware might even adversely change
system functioning, insert malware for remote access, and
many other possibilities to indirectly affect the major parts
of the system. There are many factors that can lead to a
successful attack on a PMIC including the system vulnerability
to flash firmware without verification, improper data filtering,
insecure firmware updates, lack of verification in supply chain
attacks, hardware attacks, trojan insertion and various other
factors. The proposed attack can have significant social and
economical impacts as well as national security threats. As
an example we mentioned the SolarWinds attack, which had
massive implications for the US economy and national secu-
rity. Notably, we consider that it is possible to send messages
to the PMIC via either a side-channel or sensor readings after
a device is deployed depending on the target and whether the
attacker can influence the target post-deployment. However, it
may be more convenient for the attacker to attack at a supply
chain stage in which the device is currently being handled by
a third party. Depending on the stage of attack, whether it is
within the supply chain or after deployment on field, the effort
required to mitigate such attacks would vary.

A. Attack Objectives and Consequences

Apart from a firmware based attack as proposed in FAN-
DEMIC, attacks on a PMIC could also be hardware based
with different objectives like manipulation of sensor signal,
performing a denial of service (DoS) attack, system failure,
physical damage of the complete system associated with
PMIC, inserting malware to infect the connected parts, and
other different objectives. The below subsections discuss about
some of them.

1) Sensor Data Corruption: Many sensing systems are
often dependent on a stable, predictable supply voltage for
correct operation. Signals generated by passive sensing com-
ponents like thermocouples, resistance temperature detectors
(RTDs), and strain gauges are often either far too small to
be useful without a gain stage, or dependent on a powered
circuit, both of whose outputs are heavily influenced by supply
voltage. Ratiometric sensors like the MPX2010 pressure sen-
sor used in our example are especially susceptible to supply
voltage, as their outputs are directly proportional to supply
voltage. As a result, a PMIC attack could potentially cause
data corruption by altering sensor power supplies, which many
sensing systems expect to remain fixed. From our example
attack in Figure 7, we can calculate an approximation for the
error rate with respect to the original reading as follows:

% Error Rate =
(∆Pressure Reading

∆Supply Voltage

)( 1

Expected Pressure

)
=

414.73 Pa/V

1105.23 Pa
= 37.52 %/V

This gives an error rate of about 3.75 % relative to the pressure
reading at 2.9 V for every change in 0.1 V of the supply
voltage. This is a huge amount for such a small change
in supply voltage. If such a system were used in a safety
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critical system, this attack could have potentially devastating
consequences due to the apparent corruption of data.

While this issue might be corrected if the controller also
takes the supply voltage into account when calculating the
final measurement, this would require a physical connection
from the supply to an analog-to-digital converter (ADC), to
the controller. Since a MCU’s on-board ADC is unlikely to
tolerate higher supply voltages, an external one would need to
be introduced, occupying valuable floor space on the device
PCB.

2) Logic Circuit Wear-Out: Logic circuit wear-out usually
happens around a well defined stage of life of circuits, in which
their failure rate increases due to the aging of components,
which causes critical sections of the device to be worn-
out. This wear-out is caused by a function of the stress the
components are subject to, and the time they are exposed to
it. Fig. 8 illustrates how a normal life cycle of a circuit would
be, along with how FANDEMIC would affect it. The solid
blue line describes the random failures that happen across the
life cycle of the component, which is constant across time.
The red solid line shows the normal behavior of the expected
life of an IC, in which the failure rate is higher at the early
life due to early failures (green solid line). As the IC enters
the useful stage it remains constant due to the early failures
dying off at the early stage. Towards the end-of-life stage, the
failure rate of the IC starts increasing again due to wear-out
failures (brown solid line). On the other hand, the red dashed
line shows the observed failures due to FANDEMIC, in which
the stress causes wear-out failures (gold dashed line) in the IC
as early as the end of the early life stage.

3) Induced Battery Failure: Most mobile IoT devices will
require a battery to provide power to the system when other
sources are unavailable. Because of their high energy density,
performance, and lack of memory effect, lithium-ion batteries
are one of the most popular options for electronic devices
[44]. However, they are particularly sensitive to overcharge
conditions, in which the battery is fully charged, but continues
to receive current past that point. Under such conditions, the
materials in the battery begin to deteriorate, causing perfor-
mance and lifetime degradation. In extreme cases, material
degradation can result in thermal runaway, in which the
mechanisms for self heating in the battery outpace thermal
dissipation and ultimately result in explosion [44]. Because of
this, IoT system engineers need to pay careful attention to the
battery charging circuits in their devices. Often, PMICs like
the MAX20303 that we used incorporate charging mechanisms
internally, with different charging configurations available.
Thus, a PMIC attack can potentially cause major damage
over time if the battery charging mechanisms are targeted,
at minimum degrading lifetime and performance, and at worst
inducing thermal runaway if overcharge conditions are created.

The threat of exploding batteries cannot be understated.
Exploding batteries can cause thermal and chemical burns and
represent a major concern for public safety [33]. Moreover,
faulty devices can cost companies billions of dollars in lost
capital, as was the case for Samsung in 2017 with the recall

Fig. 8: Expected behavior of the life cycle of logic circuits
in presence of FANDEMIC vs. Normal conditions. The red
solid line shows the expected life cycle of IC components, and
the red dashed line depicts the estimated behavior caused due
to FANDEMIC (TFANCEMIC < TNormal). The brown solid
line shows the normal wear-out failures, and the gold dashed
line shows the wear-out failures caused by FANDEMIC.
Additionally, the solid blue line and solid green lines represent
the random failures and early failures, respectively.

of the Galaxy Note 7 [24]. As such, steps ought to be taken
to provide assurances against improper charging.

B. Attack Transferability

The attack in this work is intentionally presented in a
general way so that it can be applied to other vulnerable bare-
metal devices. Studies on firmware attacks have demonstrated
that entire families of devices across different instruction set
architectures can be affected by the same modification attacks
as they often contain the same fundamental flaws [4], [28].
As such, one can conceivably construct a PMIC attack against
other MCUs and PMICs if the other assumptions are satisfied,
provided that the attacker has sufficient knowledge of the
target system. In particular, since this attack ultimately boils
down to making a malicious I2C transmission, any MCU
capable of sending such a transmission can be targeted, though
each binary needs to be tailored to that MCU’s particular
architecture. In fact, an attack might even install an entirely
separate controller on the I2C bus as a hardware trojan that can
carry out this attack without going through the main processor.
Additionally, though we have already stated that the attack in
this paper is not meant for OS-based systems, future work can
be done on extending it to apply to such systems, particularly
by targeting the hardware drivers that are usually present for
the OS to interface with hardware. This could even apply
to Real-Time Operating Systems, whose kernels are often
written for bare metal. Porting this attack to other platforms
as specified in this section is considered for future work.

C. Mitigation

Finding proper mitigation solutions for attacks within the
supply chain is significantly challenging. The verification stage
should not only comprise of functional/logical testing, but
also comprise of security aspects. Also, security standard
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guidelines and practices should be followed. For example,
organizations should follow risk mitigation guidelines as men-
tioned in detail in in the document, ”Defending Against Soft-
ware Supply Chain Attacks” by NIST [26]. Cyber resilience
techniques within the supply chain have been covered by Mitre
in technical report, ”Supply Chain Attacks and Resiliency
Mitigations” [38].

A few of the mitigation techniques mentioned below are
directed towards various forms of firmware attacks. While
providing the mitigations, we generalized such that similar
attacks could be tackled within other devices as well.

1) Test Points: Loopholes in hardware design can lead to
significant system attacks. To make the firmware patching
attack successful, attackers need a way to send back the
patched firmware or malicious data to the device that could be
made possible by various methods. One of them is the loophole
in the hardware PCB design. The critical test points like debug
ports present on the PCB pave the way for the attacker to
get unauthorized access to the processor internal memory if
proper debug port disabling and authorization checks are not
done properly.

Apart from debug port access, the access to test points on the
PCB can also lead to signal tampering and corruption. Access
to hardware peripheral test points can lead to signal sniffing
(data leakage if critical data is being transmitted without en-
cryption), and signal tampering via creating hardware glitches
on the respective test points that could change system behavior.
Hence, to mitigate these attack possibilities it is recommended
not to expose the critical test points on the PCB. Even the
package of the processor used and the PCB schematic design
should be complex enough to prevent PCB reversing based
attacks. This mitigation approach might not be effective if the
attack is targeted within the supply chain as attacks within
the supply chain could insert vulnerability in the PCB design
phase itself. To detect such vulnerabilities, there needs to be
targeted validation and verification after the design, such that
manipulation in the design should not be left unnoticed.

2) Binary Auditing: Device firmware, the main business
logic of a whole system, passes through various phases from
the design stage to the deployment stage. There is possibility
of malicious payload insertion or patching at these stages
within the supply chain that can go unnoticed if robust auditing
is not done before actual deployment on the field. Even for
devices that have already been deployed on the field that were
not audited prior to deployment, binary auditing assists in
identifying potential threats and vulnerabilities, including hard
coded sensitive credentials/data, command execution, remote
code execution (RCE) bugs, vulnerable applications, and other
implementation based loopholes in the firmware.

Static analysis, dynamic analysis, or the combination of both
are used during binary auditing depending on the firmware
type, architecture, and resource availability. There are various
tools useful for static analysis: Ghidra [23], Radare [31],
and IDA [10] help to disassemble, decompile, and perform
firmware reversing. Tools like Binwalk [2], Firmwalker [9],
and Firmware Mod Kit [8] help to extract OS based binaries,

traverse through the internal files, hunt for potential vulnera-
bilities, and statically analyze the file system. Additionally,
dynamic auditing is performed on the binary to identify
possible remote code execution vulnerabilities, and evaluate
how the system is affected after exploitation. Tools used for
dynamic auditing include GDB, Qiling, Unicorn, and a few
other tools come as a savior for dynamic auditing when
the device hardware is not accessible. Similarly, tools like
AFL, Radamsa, boofuzz and other similar tools are used for
performing fuzzing based auditing.

Unfortunately, despite the availability of different tools for
binary auditing, there are still challenges that have a wide
research scope. These include automation in bare metal, RTOS
based firmwares, the accuracy of findings, malware detection,
hardware dependency during emulation, fuzzing and many
other feature inclusion to automate the whole auditing process.

3) Secure firmware updates: One of the main reasons
behind the success of maliciously patched firmware is the
insecure implementation of firmware update/flashing mecha-
nisms into the system. In the IoT ecosystem, for the devices
deployed on the field, there are various ways to update the
firmware such as via USB, debug interface (e.g., JTAG), over
the air (OTA) or CAN bus. These updates mechanisms have
different levels of security implementations. Devices could
be easily patched with the malicious firmware if no security
checks are implemented during firmware upload. In some
devices only integrity checks are implemented, for instance
using hashing or checksum, but these are also prone to attack
depending on the kind of implementation. The implementation
of secure boot via digital signature validation provides both
authentication and integrity validation. The implementation
of cryptographic operations should be compliant with the re-
quired security strength, secure key transfer and management.
If the implementation weakens, it provides the opportunity
for attackers to bypass the security feature and successfully
flash the malicious content. Even with secure boot there
have been hardware attacks and exploitation of implementa-
tion related vulnerabilities. Embedded systems being resource
constrained faces trade offs between security and resource
involvement. For example, in order to store the cryptographic
keys, certificates, and sensitive information, hardware security
modules are considered to be relatively secure but due to
the involved cost, they are not incorporated in low cost IoT
devices. Similarly, there are other trade offs with respect to
computational and memory requirements.

The above mitigation via secure firmware update mecha-
nisms to protect from the upload of malicious firmware might
not be effective if the attack is within the supply chain itself.
There are many possibilities of firmware being patched or
hardware trojan insertion at the early stage in the supply chain
that might go unnoticed during validation.

VI. CONCLUSION

In this manuscript, we expose and expand upon a novel class
of firmware vulnerability targeting bare-metal IoT devices’
power management IC that can be exploited for a supply
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chain attack. In particular, we propose a firmware attack
construction and deployment on power management IC called
FANDEMIC, and discuss the potential consequences of such
an attack, like accelerated aging, battery failure, and sensor
data corruption, demonstrating the latter in a hardware pro-
totype. Additionally, we proposed a few different approaches
to reverse engineer a system’s binary for attack construction,
implementing disassembly and decompilation in conjunction
with static analysis, as well identification of library and API
functions using simple function matching techniques based
on cross-correlation. We further demonstrate it is possible
to cause an incorrect reading in a pressure sensor of up to
3.75% by changing the voltage by only 0.1V, proving that
this attack is feasible, and the voltage does not need to
drastically change to have significant effects on the target.
Lastly, we discuss several mitigation techniques against this
kind of attack. Future work includes further research in the
additional attack approaches presented, analyzing which other
components could potentially be targeted by this firmware
attack, and developing robust mitigation techniques able to
secure bare-metal IoT devices.

ACKNOWLEDGMENT

This work was funded in part by the Robert N. Noyce Trust
and by the National Science Foundation (NSF) through Com-
puting Research Association for CIFellows Project 2030859.

REFERENCES

[1] D. Berry, D. R. Towill, and N. Wadsley, “Supply chain management
in the electronics products industry,” International Journal of Physical
Distribution & Logistics Management, vol. 24, no. 10, pp. 20–32, Jan
1994. [Online]. Available: https://doi.org/10.1108/09600039410074773

[2] Binwalk, “Tool for searching a given binary image for embedded files
and executable code,” accessed July 16, 2021. [Online]. Available:
https://tools.kali.org/forensics/binwalk

[3] S. Borg, “Securing the supply chain for electronic equipment,”
submitted to the NSC by The Internet Security Alliance. as part of
the 60-day review of Cyberspace Policy, 2009. [Online]. Available:
https://obamawhitehouse.archives.gov/files/documents/cyber/ISA%20-
%20Securing % 20the % 20Supply % 20Chain % 20for % 20Electronic %
20Equipment.pdf

[4] A. Cui, M. Costello, and S. Stolfo, “When firmware modifications attack:
A case study of embedded exploitation,” in 2013 NDSS Symposium, 02
2013.

[5] Department of Homeland Security, “Study on mobile device security
- april 2017.” accessed July 21, 2021. [Online]. Available: https:
//www.dhs.gov/sites/default/files/publications/DHS%20Study%20on%
20Mobile%20Device%20Security%20-%20April%202017-FINAL.pdf

[6] C. Eagle and K. Nance, The Ghidra Book. No Starch Press, 2020.
[7] FireEye, “Highly evasive attacker leverages solarwinds supply chain to

compromise multiple global victims with sunburst backdoor,” Threat
Research, 2020. [Online]. Available: https://www.fireeye.com/blog/
threat-research/2020/12/evasive-attacker- leverages-solarwinds-supply-
chain-compromises-with-sunburst-backdoor.html

[8] Firmwalker, “Easy deconstruction and reconstruction of firmware
images for various embedded devices.” accessed July 16, 2021. [Online].
Available: https://github.com/rampageX/firmware-mod-kit/wiki

[9] ——, “A simple bash script for searching the extracted or mounted
firmware file system,” accessed July 16, 2021. [Online]. Available:
https://github.com/craigz28/firmwalker

[10] IDA, “A powerful disassembler and a versatile debugger,” accessed
July 16, 2021. [Online]. Available: https://hex-rays.com/ida-pro/

[11] A. Inc, “General:intel hex file format,” accessed July 20, 2021. [Online].
Available: https://developer.arm.com/documentation/ka003292/latest

[12] I. Jibilian and K. Canales, “The us is readying sanctions against russia
over the solarwinds cyber attack. here’s a simple explanation of how the
massive hack happened and why it’s such a big deal,” Business Insider,
2021. [Online]. Available: https://www.businessinsider.com/solarwinds-
hack-explained-government-agencies-cyber-security-2020-12

[13] JSOF, “Ripple 20: 19 zero-day vulnerabilities amplified by the
supply chain,” Disclosures, 2020. [Online]. Available: https://www.jsof-
tech.com/disclosures/ripple20/

[14] C. Karamitas and A. Kehagias, “Function matching between binary
executables: efficient algorithms and features,” Journal of Computer
Virology and Hacking Techniques, vol. 15, no. 4, pp. 307–323, Dec
2019. [Online]. Available: https://doi.org/10.1007/s11416-019-00339-6

[15] J. Keane and C. H. Kim, “An odomoeter for cpus,” IEEE Spectrum,
vol. 48, no. 5, pp. 28–33, 2011.

[16] T. S. X. Lab, “Safety tips for ”badpower” risks in some fast
charging products,” Disclosures, 2015. [Online]. Available: https:
//patents.justia.com/patent/9721093

[17] Y. R. Lee, B. Kang, and E. G. Im, “Function matching-based
binary-level software similarity calculation,” in Proceedings of the
2013 Research in Adaptive and Convergent Systems, ser. RACS ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
322–327. [Online]. Available: https://doi.org/10.1145/2513228.2513300

[18] E. Lopatto, “Tim cook’s trick for making iphones is now at risk from the
pandemic: The perils of just-in-time manufacturing,” The Verge, 2020.
[Online]. Available: https://www.theverge.com/2020/3/13/21177024/
apple-just-in-time-manufacturing-china-coronavirus-supply-chain

[19] A. Ltd., DUI0553B Cortex-M4 Devices Generic User Guide, ARM Ltd.,
2011-8-3.

[20] F. E. McFadden and R. D. Arnold, “Supply chain risk mitigation for
it electronics,” in 2010 IEEE International Conference on Technologies
for Homeland Security (HST), 2010, pp. 49–55.

[21] M. McGuire, U. Ogras, and S. Ozev, “Pcb hardware trojans: Attack
modes and detection strategies,” in 2019 IEEE 37th VLSI Test Sympo-
sium (VTS), 2019, pp. 1–6.

[22] D. Mehta, H. Lu, O. P. Paradis, M. A. M. S., M. T. Rahman, Y. Iskander,
P. Chawla, D. L. Woodard, M. Tehranipoor, and N. Asadizanjani, “The
big hack explained: Detection and prevention of pcb supply chain
implants,” J. Emerg. Technol. Comput. Syst., vol. 16, no. 4, Aug. 2020.
[Online]. Available: https://doi.org/10.1145/3401980

[23] National Security Agency, “Ghidra,” 2019, accessed June 23, 2021.
[Online]. Available: https://www.nsa.gov/resources/everyone/ghidra/

[24] B. News, “Samsung confims battery fauls as cause of note 7
fires,” January 2017, accessed July 16, 2021. [Online]. Available:
https://www.bbc.com/news/business-38714461

[25] NIST, “National vulnerability database,” accessed July 16, 2021.
[Online]. Available: https://nvd.nist.gov/

[26] ——, “Defending against software supply chain attacks,” April 2021.
[Online]. Available: https://www.cisa.gov/sites/default/files/publications/
defending against software supply chain attacks 508 1.pdf

[27] J. Obermaier, M. Schink, and K. Moczek, “One exploit to rule
them all? on the security of drop-in replacement and counterfeit
microcontrollers,” in 14th USENIX Workshop on Offensive Technologies
(WOOT 20). USENIX Association, Aug. 2020. [Online]. Available:
https://www.usenix.org/conference/woot20/presentation/obermaier

[28] J. Obermaier and S. Tatschner, “Shedding too much light on a microcon-
troller’s firmware protection,” in 11th {USENIX} Workshop on Offensive
Technologies ({WOOT} 17), 2017.

[29] T. Omitola and G. Wills, “Towards mapping the security challenges
of the internet of things (iot) supply chain,” Procedia Computer
Science, vol. 126, pp. 441–450, 2018, knowledge-Based and Intelligent
Information & Engineering Systems: Proceedings of the 22nd Inter-
national Conference, KES-2018, Belgrade, Serbia. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050918312547

[30] V. Prabhu, “Bad power attack: Hackers can modify the power
management ic (pmic) firmware to make your smartphone explode
remotely,” Disclosures, 2020. [Online]. Available: https://androidrookies.
com/fast-charging-vulnerability-could-be-used-by-hackers-to-explode-
smartphones-remotely/

[31] Radare, “A free/libre toolchain for easing several low level tasks,”
accessed July 16, 2021. [Online]. Available: https://rada.re/n/radare2.
html

[32] N. Semiconductor, nRF52832 Product Specification, Nordic Semi-
conductor, 2017.

14

https://doi.org/10.1108/09600039410074773
https://tools.kali.org/forensics/binwalk
https://obamawhitehouse.archives.gov/files/documents/cyber/ISA%20-%20Securing%20the%20Supply%20Chain%20for%20Electronic%20Equipment.pdf
https://obamawhitehouse.archives.gov/files/documents/cyber/ISA%20-%20Securing%20the%20Supply%20Chain%20for%20Electronic%20Equipment.pdf
https://obamawhitehouse.archives.gov/files/documents/cyber/ISA%20-%20Securing%20the%20Supply%20Chain%20for%20Electronic%20Equipment.pdf
https://www.dhs.gov/sites/default/files/publications/DHS%20Study%20on%20Mobile%20Device%20Security%20-%20April%202017-FINAL.pdf
https://www.dhs.gov/sites/default/files/publications/DHS%20Study%20on%20Mobile%20Device%20Security%20-%20April%202017-FINAL.pdf
https://www.dhs.gov/sites/default/files/publications/DHS%20Study%20on%20Mobile%20Device%20Security%20-%20April%202017-FINAL.pdf
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://github.com/rampageX/firmware-mod-kit/wiki
https://github.com/craigz28/firmwalker
https://hex-rays.com/ida-pro/
https://developer.arm.com/documentation/ka003292/latest
https://www.businessinsider.com/solarwinds-hack-explained-government-agencies-cyber-security-2020-12
https://www.businessinsider.com/solarwinds-hack-explained-government-agencies-cyber-security-2020-12
https://www.jsof-tech.com/disclosures/ripple20/
https://www.jsof-tech.com/disclosures/ripple20/
https://doi.org/10.1007/s11416-019-00339-6
https://patents.justia.com/patent/9721093
https://patents.justia.com/patent/9721093
https://doi.org/10.1145/2513228.2513300
https://www.theverge.com/2020/3/13/21177024/apple-just-in-time-manufacturing-china-coronavirus-supply-chain
https://www.theverge.com/2020/3/13/21177024/apple-just-in-time-manufacturing-china-coronavirus-supply-chain
https://doi.org/10.1145/3401980
https://www.nsa.gov/resources/everyone/ghidra/
https://www.bbc.com/news/business-38714461
https://nvd.nist.gov/
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.usenix.org/conference/woot20/presentation/obermaier
https://www.sciencedirect.com/science/article/pii/S1877050918312547
https://androidrookies.com/fast-charging-vulnerability-could-be-used-by-hackers-to-explode-smartphones-remotely/
https://androidrookies.com/fast-charging-vulnerability-could-be-used-by-hackers-to-explode-smartphones-remotely/
https://androidrookies.com/fast-charging-vulnerability-could-be-used-by-hackers-to-explode-smartphones-remotely/
https://rada.re/n/radare2.html
https://rada.re/n/radare2.html


[33] A. Semuels, “When your amazon purchase explodes,” April 2019,
accessed July 16, 2021. [Online]. Available: https://www.theatlantic.
com/technology/archive/2019/04/ lithium- ion- batteries- amazon- are-
exploding/587005/

[34] S. Skorobogatov, Physical Attacks and Tamper Resistance. New York,
NY: Springer New York, 2012, pp. 143–173. [Online]. Available:
https://doi.org/10.1007/978-1-4419-8080-9 7

[35] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal
Processing. USA: California Technical Publishing, 1997.

[36] SVD-Loader Contributors, “Svd-loader for ghidra: Simplifying bare-
metal arm reverse engineering,” accessed July 16, 2021. [Online].
Available: https://leveldown.de/blog/svd-loader/

[37] L. Tung, “Microsoft: Firmware attacks are on the rise and you
aren’t worrying about them enough,” ZDNet, 2021. [Online]. Available:
https://www.zdnet.com/article/microsoft-firmware-attacks-are-on-the-
rise-and-you-arent-worrying-about-them-enough/

[38] G. J. S. William J. Heinbockel, Ellen R. Laderman, “Supply
chain attacks and resiliency mitigations,” Oct 2017. [Online].
Available: https://www.mitre.org/sites/default/files/publications/pr-18-
0854-supply-chain-cyber-resiliency-mitigations.pdf

[39] K. Yang, D. Forte, and M. M. Tehranipoor, “Protecting endpoint devices
in iot supply chain,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2015, pp. 351–356.

[40] K. Yang, D. Blaauw, and D. Sylvester, “Hardware designs for security
in ultra-low-power iot systems: An overview and survey,” IEEE Micro,
vol. 37, no. 6, pp. 72–89, 2017.

[41] K. Yang, D. Forte, and M. Tehranipoor, “Resc: An rfid-enabled
solution for defending iot supply chain,” ACM Trans. Des. Autom.
Electron. Syst., vol. 23, no. 3, Feb. 2018. [Online]. Available:
https://doi.org/10.1145/3174850

[42] K. Yang, D. Forte, and M. M. Tehranipoor, “Cdta: A comprehensive
solution for counterfeit detection, traceability, and authentication in the
iot supply chain,” ACM Trans. Des. Autom. Electron. Syst., vol. 22,
no. 3, 4 2017. [Online]. Available: https://doi.org/10.1145/3005346

[43] S. Yang, A. Alaql, T. Hoque, and S. Bhunia, “Runtime integrity
verification in cyber-physical systems using side-channel fingerprint,” in
2019 IEEE International Conference on Consumer Electronics (ICCE),
2019, pp. 1–6.

[44] M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-ion batteries. Springer,
2009, vol. 1.

[45] Z. Yu, W. Zheng, J. Wang, Q. Tang, S. Nie, and S. Wu, “Codecmr:
Cross-modal retrieval for function-level binary source code matching,”
in NeurIPS, 2020.

[46] D. Zhang, Y. Han, and Q. Ren, “A novel authorization methodology to
prevent counterfeit pcb/equipment through supply chain,” in 2019 IEEE
4th International Conference on Integrated Circuits and Microsystems
(ICICM), 2019, pp. 128–132.

[47] W. Zhou, Y. Jia, A. Peng, Y. Zhang, and P. Liu, “The effect of iot new
features on security and privacy: New threats, existing solutions, and
challenges yet to be solved,” IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 1606–1616, 2019.

[48] H. Zhu, X. Guo, Y. Jin, and X. Zhang, “Pcbench: Benchmarking of
board-level hardware attacks and trojans,” in Proceedings of the 26th
Asia and South Pacific Design Automation Conference, ser. ASPDAC
’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 396–401. [Online]. Available: https://doi.org/10.1145/3394885.
3431596

15

https://www.theatlantic.com/technology/archive/2019/04/lithium-ion-batteries-amazon-are-exploding/587005/
https://www.theatlantic.com/technology/archive/2019/04/lithium-ion-batteries-amazon-are-exploding/587005/
https://www.theatlantic.com/technology/archive/2019/04/lithium-ion-batteries-amazon-are-exploding/587005/
https://doi.org/10.1007/978-1-4419-8080-9_7
https://leveldown.de/blog/svd-loader/
https://www.zdnet.com/article/microsoft-firmware-attacks-are-on-the-rise-and-you-arent-worrying-about-them-enough/
https://www.zdnet.com/article/microsoft-firmware-attacks-are-on-the-rise-and-you-arent-worrying-about-them-enough/
https://www.mitre.org/sites/default/files/publications/pr-18-0854-supply-chain-cyber-resiliency-mitigations.pdf
https://www.mitre.org/sites/default/files/publications/pr-18-0854-supply-chain-cyber-resiliency-mitigations.pdf
https://doi.org/10.1145/3174850
https://doi.org/10.1145/3005346
https://doi.org/10.1145/3394885.3431596
https://doi.org/10.1145/3394885.3431596


APPENDIX

A. Full Attack Tree

The full PMIC Attack Tree is presented below. It outlines the minimum necessary assumptions for realizing this attack, and
then describes it with a tree-like structure in which the root node represents the attack goal, and subtrees represent subgoals
necessary to accomplish the higher ones. The | is used to denote an ”or” branch, in which any of the branches that begin with
| can be used to accomplish its parent goal. The & is used to denote an ”and” branch, in which all branches that begin with
& must have their goals completed in order to accomplish the parent goal. Additional assumptions are included as necessary.
Note that some branches may be present without further elaboration. These branches may represent alternative methods to
accomplish the parent goal that are not explored in this paper, or are leaf goals which are trivial or explained in the paper.

Assumptions:
- PMIC is present on the target device
- PMIC is external to device processor
- PMIC is digitally configurable
- device controls PMIC via chip-to-chip communication protocol
- PMIC datasheet and reference manual available
- processor datasheet and reference manual available

Goal: Alter behavior of external PMIC
| - Alter configuration of PMIC via firmware modification

& - Analyze firmware for PMIC configuration information
| - Reverse engineer original firmware source code

& - Gain access to original source code
& - Locate/determine PMIC configuration section of code

| - Reverse engineer original firmware binary
& - Gain access to original firmware
& - Disassemble firmware binary
& - Locate PMIC configuration section of assembly

& - manual analysis (necessary to some extent in most cases)
+ - address cross referencing

Assumptions:
- access to static analysis tool capable of generating memory cross

references (like Ghidra)
- peripherals are memory-mapped with known addresses

| - locate instructions that make reference to peripheral addresses

+ - function matching
Assumptions:

- firmware relies on manufacturer-provided libraries
- libraries are open source
- libraries can be publicly compiled
- attacker can compile libraries on any publicly available OS
- attacker can compile libraries with any possible optimization

| - function matching via binary cross correlation
| - function matching via instruction cross correlation
| - other function matching techniques

+ - symbolic execution
Assumptions:

- symbolic execution can be performed on target architecture
- firmware is sufficiently small to limit state space explosion
- peripherals (like comm. protocols) are memory-mapped
- sufficient time and processing power for execution
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& - explore execution for accesses to comm. peripherals
& - backtrace execution for configuration section

& - Construct modified firmware
& - Load modified firmware to device

| - Alter configuration of PMIC by hijacking communication via hardware trojan
| - Alter configuration of PMIC by external processor via probing
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