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The rise of location-based services has enabled many opportunities for content service providers to op-
timize the content delivery to user’s wireless devices based on her location. Since the sharing precise
location remains a major privacy concern among the users, certain location-based services rely on con-
textual location (e.g. residence, work, etc.) as opposed to acquiring user’s exact physical location. In this
paper, we present PACL (Privacy-Aware Contextual Localizer) model, which can learn user’s contextual
location just by passively monitoring user’s network traffic. PACL can discern a set of vital attributes (sta-
tistical and application-based) from user’s network traffic, and predict user’s contextual location with a
very high accuracy. We design and evaluate PACL using real-world network traces of over 1700 users with
over 100GB of total data. Our results show that PACL, when built using the Bayesian Network machine
learning algorithm, can predict user’s contextual location with the accuracy of around 89%.
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1. Introduction

A tremendous growth has been observed in location-based ser-
vices, in the last few years. On a broad scale, current location-
based services can be classified into two categories. Users navigate
to specific locations, search for restaurants and businesses near
a certain location, check-in on social networks, etc. using these
location-based services. The first category requires precise user lo-
cation to provide its services. One example for such a service is
smartphone navigation system where exact latitude and longitude
information is essential. The other type of services only need con-
textual information about the users’ location. For example, know-
ing that a user is at an airport or a shopping mall is sufficient (and
necessary) to provide certain services specific to that location cat-
egory. Contextual location information is also important for con-
tent providers and Content Distribution Networks (CDNs) which
can use this knowledge to optimize the content delivery and pro-
vide useful recommendations based on user’s location type. Third
party services, also, can provide targeted advertisements related to
the contextual location of the user. Most users believe that con-
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textual location based services are based on precise user location,
which they are not comfortable to share, in most occasions, to re-
ceive contextual location based services. If these services can be
provided to users without compromising their privacy (about pre-
cise location), we believe users would be benefited by such ser-
vices. In this paper, we present a privacy-preserving system that
can determine user’s location category (or contextual location) just
by passively monitoring and learning from aggregate network traf-
fic from different categories of location.

Existing services such as FourSquare [1] can be used by con-
tent providers to map a user’s precise location to her contextual
location category but this requires the user to share their precise
physical location. Increasing concerns about location privacy, have
prompted more and more users to be unwilling about provide their
location information, especially for contextual location-based ser-
vices. This insecurity among users have led to the Do Not Track Me
Online Act of 2011 [2] which provides users with an option to dis-
able tracking of its location by content providers or websites. As an
example of privacy preferences, we can say that users are willing
to share their GPS location for Google Maps Navigation but when
services such as YouTube ask for user’s location, users often deny
the request even though content delivery could have been opti-
mized by YouTube if the location was available.

In this paper, we propose a network traffic analysis technique
whereby an ISP or any third-party entity capable of passively
monitoring network traffic can determine user’s contextual loca-
tion (without knowing user’s exact physical location). The ISP can
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use the traffic analysis technique to determine the users’ location
category. Once the contextual location has been identified, CDNs
can probe to obtain this information from the ISPs using the pro-
posed ISP-CDN collaboration model [3,4]. This information can
then be utilized by the CDNs to provide contextual location based
services to users, like targeted advertisements. For example, at
work, a person would prefer to get an advertisement of a word-
processing software on sale rather than get an advertisement for a
movie ticket. Thus, one of the major applications of the proposed
technique is to provide location context based advertisements to
users.

Our method can also work without an ISP accessing the con-
tents of the packets (such as website being accessed or payload).
Protocol identification and relevant statistical features are sufficient
for location categorization. As we see later in the paper, statistical
features of flow, packets and protocols in the user created network
data can be used to achieve an accuracy of location prediction
which is as high as 83%. This is accomplished without looking at
the content of the packets. This kind of inspection is often carried
out by the ISP for traffic engineering and security purposes. Hence,
we believe that ISPs can assist in location categorization using our
technique while adhering to the privacy acts. After determining the
location category, the ISPs can also fine-tune their security poli-
cies, as public locations (like cafeteria/restaurants) needs different
policies as compared to private locations (like apartments). For ex-
ample, certain ports and flows in a public location context can be
blocked to provide more security to users from attackers.

In this work, first, we show that network traffic originating
from different types of locations (such as cafe, university campus,
residence etc.) have built-in distinct signatures based on the loca-
tion category. Second, we propose a traffic analysis engine that can
leverage information collected by existing passive traffic monitor-
ing systems to discern the contextual location signature. The signa-
ture is composed of different attributes that may differ depending
on the type of location (e.g., applications users access at different
locations, flow length, packet size distributions etc.) These location
signatures can be used to identify the contextual location of any IP
address.

The contributions of our work are as follows:

1. First, we show that traffic originating from different types of lo-
cations have distinct signatures embedded in them. To establish
this, we have collected nearly a 100GB of real-world network
traffic traces for over 1700 users at different types of locations.
We identify a number of attributes which when used together
can create a distinct contextual location signature.

2. Next, we present a system (named PACL - Privacy-Aware Con-
textual Localizer) that can learn user’s contextual location
only by passively monitoring user’s traffic flows. The core of
PACL is a supervised machine learning engine that can predict
user’s contextual location efficiently and accurately. We eval-
uate our PACL model using our network traces, based on six
machine learning algorithms. The best prediction accuracy is
observed using the Bayesian Network classification algorithm
which show that PACL can predict contextual location with an
overall accuracy of 89%. This model not only gives overall good
accuracy, the accuracy for the individual classes are also very
similar and equally efficient.

This paper is structured as follows. We start out with discus-
sion of related research works in Section 2. In Section 3, we in-
troduce the PACL system and describe its functioning in details.
Section 4 includes details about the dataset used for analysis. The
features which differentiate each contextual location are discussed
in Section 5. In Section 6, we present the methods used for feature
selection. The prediction model and the prediction results observed
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Fig. 1. PACL as compared to regular localization using precise location.

using our proposed model are in Section 7, followed by conclusions
in Section 8.

2. Background and related work

Traditional location-based services are built on top of position-
ing systems (e.g. GPS) and information layer (e.g. maps, database
of establishments etc.). This is depicted in Fig. 1. Here, location-
based services that require exact physical location typically use
data from user’s positioning system combined with details of in-
formation layer. This opens up many entry points for privacy in-
vasion of users. On the other hand, certain services (such as tar-
geted advertising, content delivery optimization etc.) do not re-
quire user’s exact physical location. Also, users are less likely to
provide their location for such services. Our solution, PACL, can ad-
dress this challenge by eliminating the need of user’s physical lo-
cation in the case of contextual location-based services (see Fig. 1).
Instead of querying users for precise location, PACL passively learns
user’s contextual location by monitoring users’ network traffic.

Determining Location and Preserving Privacy: Significant
amount of past research has mostly focused on two topics: (i) ac-
curate and energy-efficient determination of user’s physical loca-
tion and, (ii) preserving user’s privacy when sharing user’s loca-
tion information. In the first category of research, a variety of loca-
tion determination mechanisms have been proposed like in [5,6].
The central focus of these studies is to reduce the energy con-
sumption of determining the location while increasing the accu-
racy. Also, other techniques such as map matching [7] are used to
improve the accuracy. Location privacy preserving techniques have
attracted a lot research starting from initial studies such as [8].
Methods such as cloaking [9] and obfuscation [10] are proposed
as ways to prevent privacy leakage of users using location-based
services. PACL is different from these studies as it does not require
actual physical location and other privacy preserving methods for
protecting the physical location.

Traffic Classification: Another thread of research that is rele-
vant to PACL is known as Internet traffic classification. The pur-
pose of traffic classification is to monitor and analyze network
traffic for determining applications and protocols being used. It is
a well-established method ([11] and references therein) of profil-
ing network traffic, anomaly detection and detecting file sharing
of copyrighted content. Such traffic classification techniques and
PACL share a few common characteristics. They both utilized traffic
monitoring and are built using machine learning algorithms. Nev-
ertheless, we believe that PACL takes a step forward by learning
and predicting contextual location purely through network traffic
analysis.

Another research work relevant to ours is [12] in which Trestian
et al. provide a detailed study on applications accessed by users at
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Fig. 2. Architecture of the PACL system: network traffic is monitored for a number
of features, which when used in the PACL model gives contextual location predic-
tion of an IP.
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different locations and show that they tend to be different at work
and home, irrespective of the time of the day. Our model not only
profiles the usage of applications and services by users at different
locations but also combines them with other statistical features to
predict their contextual location.

There are many online third-party software tools which claim
to predict the geographical location of an IP address [13]. How-
ever these services only provide city-level information of the IP
address but neither the exact location or the contextual location
is available. Some of these tools provide geographical coordinates,
but those mostly refer to the coordinates of the ISP the IP address
is registered to.

3. Privacy Aware Contextual Localizer (PACL) system

In this work, we design Privacy Aware Contextual Localizer
(PACL) system, which can determine the category of user’s location.
PACL is built on a simple fundamental idea that user’s network ac-
tivity is highly dependent on user’s contextual location. If one is
able to identify the attributes of network traffic that are sufficiently
different across different contextual location, ISP or any third party
entity capable of passively monitoring traffic, can use the same
set of attributes to determine user’s location context. This location
context can then be shared with content service providers who can
optimize the content deliver accordingly. The foremost advantage
of the PACL system is that users are not required to share their
precise location with anyone, and at the same time, they can be
served using the content that is optimized based on their location
context. The components of the PACL system are shown in Fig. 2.

Traffic Monitoring: PACL can be deployed within traffic mon-
itoring systems of an ISP or an AS (Autonomous System). Flows
originating from user IPs can be monitored for a fixed amount of
time after which PACL determines its contextual location. Note that
PACL is similar to traditional Internet traffic classification methods
as it performs better when complete bi-directional network traffic
of end-user IPs can be monitored. Since this is the first attempt
towards determining type of location purely using network traffic,
we restrict our study to the case where PACL is deployed on traffic
monitors with complete bi-directional network flows.

In our measured dataset, we collect network traffic over the
edge at WiFi hotspots deployed at different types of locations (de-
tails in Section 4). We build and verify PACL using the traces of
over a 100GB collected at different location over the period of 20
days.

Identifying Location Signature: In the PACL, we first identify
specific attributes of IPs which are likely to be correlated to IP’s

location. In the training phase, we use the available ground-truth
of location to find the correlation between the attributes with the
location. The attributes (or features) we use can be classified in
two categories - statistical features and application-based features.
Examples of statistical features include number of flows originated
by an IP, packet length distribution of all packets of an IP etc.
On the other hand, in the application-based features, we classify
user’s network flows in different categories of applications (such
as emails, games, social-networks etc.). To understand what kind of
content users are interested in (independent of which application
they use to access it) when at a specific location, we also classify
flows into different interest categories. We show that both statisti-
cal and application-based features can generate a distinct signature
for different locations.

Applying Location Signatures to Determine Location Context:
Once the location signature has been identified, PACL prediction
model predicts the contextual location of a user based on loca-
tion signature mentioned above and the observed statistical and
application-based features associated with the particular user (or
IP address). As shown in Fig. 2, the results are stored in a reposi-
tory, which can be accessed by the content providers to optimize
content delivery and provide location-specific services. However,
even after prediction of contextual location of an IP address, PACL
continues to predict contextual location as dynamic reallocation of
IPs might change IP’s location category.

The prediction model is built using a machine learning predic-
tion algorithm. Out of the six algorithms, the Bayesian Network al-
gorithm gives the best prediction accuracy. It is observed that the
combination of both the statistical features and application based
features give better prediction of location context than using each
set individually. Application of this model on our dataset of over
1700 users yields a prediction accuracy of over 89%.

In our dataset, we collect data from WiFi hotspots and hence
are aware of the location category. For the PACL model, knowledge
of the location category for some user devices is necessary - this
provides the ground-truth for the initial model building phase. For
this purpose, the PACL during traffic monitoring can anonymously
probe the users in a network for their location category informa-
tion. As we know, some users, who are willing to share location in-
termittently, will reply to such queries. As a result, we will be able
to collect the location category information for the initial model
building phase.

Before describing PACL in details, we discuss the application
scope and limitations of PACL. First and foremost, PACL cannot
be used for location-based services where user’s precise location
is essential. In other words, it cannot be used for applications
where precise location is more important than preservation of pri-
vacy. Second, PACL is capable of predicting most common “location
types” but its current form cannot characterize traffic from short-
term gatherings (such as a sports event). Thirdly, the PACL model
does not need to be deployed in the network where the traffic is
from one location context only. It has the capability to sort out dif-
ferent IP addresses and determine their location context. That way
multiple deployments at different locations are not required - de-
ployment at data aggregation points serves the purpose.

4. Network traffic collection and datasets

One major challenge we faced in developing the PACL system
is to acquire network traffic traces which precisely originate at
specific locations. If network traces from ISP or AS are used, they
might not always have the ground-truth location for different IPs.
To address this challenge, we capture the network traffic at the
edge at different WiFi hotspots deployed at different locations. The
details of the datasets are presented in Table 1.
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Table 1
Dataset used For location signature analysis.
Location Type Traces No. of IPs  Total IPs.  Total flows  Packet Count  Duration Trace Size
(Million) (Hours:Minutes)

Apartment-1 91 16,695 16.47 7:40 7.2GB
Apartment-2 78 20,505 31.15 10:40 14.9GB

Residential Apartment-3 72 315 14,396 17.45 3:22 7.9GB
Apartment-4 52 6465 14.82 2:44 6.8GB
Apartment-5 22 12,469 8.38 3:16 3.1GB
Department hall 114 14,887 2734 5:12 5.9GB

University Campus Library-1 313 529 20,153 83.62 7:55 21.9GB
Library-2 102 26,861 65.29 8:19 19.2GB
Starbucks-1 234 39,532 12.89 8:03 5.6GB

Cafeteria/Restaurant  Starbucks-2 216 450 44,720 12.73 8:48 4.9GB
Washington-1 88 10,682 2.01 0:18 682MB
Sydney-1 80 8586 4.05 1:24 1.4GB
Orlando 63 2280 1.35 0:20 499MB
Washington-2 55 3201 1.00 0:13 209MB

Airport/Travel Denver 53 458 7264 2.02 0:21 515MB
Washington-3 40 1338 137 0:20 340MB
Los Angeles 39 2691 1.01 0:15 411MB
Sydney-2 23 872 0.84 0:25 190MB
San Francisco 17 2024 117 0:15 624MB

4.1. WiFi packet captures

The data is collected by passively sniffing WiFi packets from
the air near the WiFi hotspot. We chose four different categories
of locations - residential, university campus, cafeteria/restaurants
and airport/travel (see Table 1). The four location categories that
we consider are representative of locations where users have some
sort of distinct internet usage pattern. For example, the access of
videos and games at residential locations create sessions with large
amount of data transfer and longer durations, whereas the access
of travel websites at airports will create smaller sessions with very
low byte count. There can be other location categories, but we con-
sider these four for our experiments and our prediction model.

For each category, we collected traces at multiple different lo-
cations of that category to extract/learn the category-specific char-
acteristics. The traces were collected using TP-Link WN722N WiFi
USB adapters [14] connected to a laptop running Linux. The WiFi
adapters run in monitor mode of ath9k driver [15] and Wireshark
is used to capture the packets. We connect three different adapters
to each laptop in order to simultaneously capture on 3 different
channels (channels 1, 6 and 11 of 2.4 GHz IEEE 802.11 b/g/n). The
traces account for a total of over 100GB of data captured over 20
different days. The airport traces were captured in 2012 as de-
scribed in [16].

The dataset and the subsequent analysis is based on classifi-
cation of contextual location into four classes. However, the PACL
model can be extended to incorporate other location categories,
provided the model is trained beforehand based on the features
from those locations. The analysis done here is based on wireless
network traces, but the analysis is applicable for wired network
traffic. We use WiFi traces as they can be collected easily in pub-
lic settings, and in any case, most of the devices that are used at
these locations are wireless devices.

4.2. Data sanitization

Before processing the data as input to the PACL learning model,
we sanitize the network traces. The process of the sanitization
phase is divided into two steps. First, the collected dataset is
anonymized to remove any personal identity related information.
The second step involves removing all the packets from the net-
work traces which will not be forwarded to the ISP. In this step, all
the MAC layer frames (such as WiFi beacons etc.) as well as MAC

layer headers are removed from all IP packets as these information
is not forwarded beyond WLAN.

5. Finding location signature

We propose a traffic analysis system, which can passively mon-
itor network traffic and extract the statistical features and appli-
cation and service based features, on a per-IP basis, to be used
for learning and prediction.

5.1. Statistical features

For each IP address in the trace, we calculated the statistical
features listed below. They are divided into 4 subsets as shown
below. Type I and II attributes hold single numerical values, while
the attributes of Type IIl and IV are distributions, which are rep-
resented using < min, max, average, median, standard deviation,
skewness, kurtosis> . While extracting the features from the traffic,
we have no prior idea about the shape of the distributions (Gaus-
sian or not). We are primarily concerned with accurate representa-
tion and description of distributions obtained from the data. Thus,
similar to the network features used in [11] we consider the first
four moments (mean, variance, skewness and kurtosis) in addition
to maxima, median and minima. Note that, a flow is identified us-
ing a 5-tuple < source IP, source port, destination IP, destination
port, protocol>.

Type I - Coarse-grain statistics:

1) Total number of flows

2) Average number of concurrent sessions

3) Percentage ON time - ratio of number of 10 second blocks when
IP was active (had at least one flow) to the total time of the
trace

4) Number of activity periods (one activity period = a period of
time when the IP was continually active, i.e. had at least one
flow active)

5) Number of bytes transferred

6) Number of packets transferred

7) Average application data rate

Type II - Protocol level statistics:

8) Number of HTTP flows
9) Number of HTTPS flows
10) Number of TCP (non-HTTP/HTTPS) flows
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Fig. 3. Figures represent variation of four key attributes across four different location classes.

11) Number of UDP flows
Type III - Flow level statistics:

12) Flow length

13) Application data rate of the flows
14) Bytes transferred per flow

15) Packets transferred per flow

Type IV - Packet level statistics:

16) Packet inter-arrival time
17) Packet size

The total number of statistical features are 53 (1 feature each
for Type I and II and 7 features for each distribution for the statis-
tics of Type III and IV).

During the entire time of the trace, the DHCP lease to a par-
ticular device does not expire and thus for all calculations, we as-
sume one IP address is assigned to one device (we also verify this
by checking the MAC addresses corresponding to each IP address).
For the calculation of activity period, percentage ON time and con-
current flows per IP address, the entire trace duration was divided
into bins of 10 s intervals each and the analysis was done based on
the whether an IP address created any flow during each of these
time bins. The statistical attributes which are directly dependent
on the total time of the trace (e.g., total flows per IP, total num-
ber of HTTP flows, etc.) were normalized on a per hour basis, to
eliminate any biases due to difference in the duration of different
traces.

Analysis of Statistical Features: The statistical attributes re-
veal distinct information that can serve as location signature and
in turn, used to predict contextual location. Some of these charac-
teristics are shown in Fig. 3. As we can see, airport trace has the

highest number of flows per IP per hour as compared to the other
locations, whereas Campus has the lowest, as seen in Fig. 3a. Air-
port and cafeteria traces have mostly smartphone based network
traffic and thus each device generates a large number of flows (due
to background applications and ads). On the other hand, campus
traces have a large number of IP addresses with very low flow
count - as there are users who pass by the WiFi hotspot and their
devices, which are connected to the campus network, by default,
may generate traffic for that transient period of time.

Fig. 3b and d shows the length of flows and the number of ac-
tivity periods per IP are the largest in case of residence as com-
pared to others. This is expected, as in residential buildings users
tend to keep their devices on for longer duration, even though
the usage can be in on-off manner and not continuously. From
Fig. 3b we can observe that more than 50% of the IP addresses
in the residential traces have flow lengths greater than top 10% IP
flow-lengths in cafeteria trace. This is because most users tend to
stay for a very short time in cafeterias. This proportion of users is
smaller in campus as many users prefer to sit at once place. How-
ever there are several IP addresses with very small flow-lengths in
campus trace, generated due to users who happen to pass by, as
mentioned above.

Activity Period: One of the most distinct attributes among dif-
ferent location categories is activity period, as we will later see
in Section 7. We calculate activity period count as the number of
times an IP was continuously generating at least one flow in each
of the 10 s time intervals, the whole trace was divided into. Fig. 3d
indicates the higher number of activity periods in apartments, but
questions may arise as to why such a trend is observed in airports
too. This is because the activity period is normalized on a per-hour
basis and the activity periods actually calculated are for approxi-
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Fig. 4. Figures represent the variation of a particular attribute across the different traces of the same location class.

mately 15-30 min traces. Hence we see higher number of activity
periods in airport trace. Around 90% of IP addresses at campus and
cafeteria have activity period count less than five. This is mainly
as a result of passer-by user devices in campus traces and users
in cafeteria traces who connect to the network for a few specific
purposes.

Percentage ON Time: The percentage ON time of each IP ad-
dress represents the total time an IP was active, as a percentage
of the entire time of the trace. As seen in Fig. 3c, apartment and
airport traces have the highest ON time percentage of all the four
locations as most user devices are usually on for almost the entire
time of the trace (note that airport traces are very short in du-
ration). ON time percentages in cafeteria is smaller than those in
campus, but there are some devices with very high percentage ON
time in the cafeteria dataset. This is most likely to be due to the
employees of the establishment who were present at that location
during the entire data collection time.

Variation across datasets for the same location category:
Fig. 4a and b shows the variation of two specific attributes across
more than one trace of a particular location. These two figures help
us to show that the variation of a particular attribute across mul-
tiple traces at the same category of location behaves similarly, in-
spite of the fact that the trace was collected in a different date and
at a different location (but same contextual location). Similar trend
across different traces at same location category is seen for almost
all of the above mentioned features, which help us to assign a spe-
cific signature for each type of location.

To detect the interest of users in various kinds of applications
at different locations, we use a keyword based search on the con-
tent of the captured packets, a method similar to the one used in
[12]. Packets include the HTTP objects like GET, POST and URLs as
well as DNS queries and answers. For the keyword based search,
we created a keyword list, currently around 50 keywords for each
category - generated using the common words of the Keyword Tool
from Google Adwords [17] collected over one week, for each of the
categories. Based on this search, we used the percentage of pack-
ets for a particular IP that had a keyword-match in any category as
the score of the IP for that category. Apart from the 21 categories,
we also did the above analysis on 12 commonly used services and
used the scores as attributes. The 33 attributes in this category,
combined with 53 statistical features, result in 86 attributes, in to-
tal.

5.2. Application based categorization

The keyword search on the trace showed that in general,
around 60-70% of the IP addresses could be profiled on the ba-
sis of interest category. A particular IP address is considered to be

Table 2
Application categories and services.

Categories Entertainment, Games, News-Reading, Finance,
Social network, Sports, Education-Career, Email,
Family, File-sharing, Technology, Food-Culture,
Health, Fashion, Politics, Shopping, Automobiles,
Weather, Portals, Travel, Science

YouTube, Netflix, Pandora, Amazon, Craigslist,
Twitter, Facebook, Instagram, ESPN, Gmail,
CNN, Dropbox

Services

Table 3
Categories and keywords.

Interest Category Keywords

Entertainment youtube, netflix, itunes, mp3, video

Games zynga, xbox, games, trivia, aws
News and Reading nytimes, bbc, cnn, blogspot, news
Sports espn, mlb, soccer, fifa, ncaa, nba

Social Networks facebook, twitter, friends, plus.google
Travel maps, expedia, tripadvisor, yelp

Technology endgadget, cnet, bestbuy, techcrunch
Education and Career .edu, stackoverflow, github, courseera
Shopping craigslist, amazon, ebay, groupon
Email gmail, pop3, imap, smtp, hotmail

interested in a specific application category if there is at least one
packet that gives a keyword-match for that category. However, we
observed that when a particular IP address was profiled to be be-
longing to a certain application category there were substantially
large count of packets for which there was a keyword match in
the same category. Table 2 shows the list of categories and ser-
vices used for as the features in this category and Table 3 shows a
few keywords of some of the categories. Fig. 5 represents the per-
centages of IP addresses that were profiled to be interested in one
specific category.

Interpretation of Application based Categorization: The res-
idential traces have the highest interest percentage in entertain-
ment. Apart from that, food, family, shopping, politics, fashion and
automobiles have higher percentage with lower interest in mails
and portals as compared to the other locations. Mail and portals
are not accessed by users at their own homes as compared to out-
side, like at work or when on the go. Also access to file-sharing
websites are mostly seen in apartment traces. Traces collected in a
campus WiFi hotspot have a very high percentage of IPs interested
in education related websites, portals and emails, as can be ex-
pected. Music, video and games are accessed much less in a cam-
pus environment as compared to the others. Results in Fig. 5 verify
this claim.
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Fig. 5. Representation of interest categorization (E1: Youtube, E2: Netflix, E3: Pandora, N1: CNN, S1: Facebook, S2: Twitter, S3: Instagram, M1: Gmail).

Cafeteria and airport traces have very high number of IPs with
interest in social-networks, portals and email. Outdoor locations
are expected to have high percentage of users checking weather,
as is observed in cafeteria and airport traces. There is a high num-
ber of IP addresses accessing travel related websites in the airport,
as compared to other traces, which is an expected trend. Users in-
terested in entertainment are much higher in apartment and cafe-
teria. Gaming websites or applications are found to be very high in
the cafeteria trace (due to smart-phone games) and in apartments
(due to dedicated gaming services, such as, xbox).

6. Feature selection

Before creating the model for prediction, we need to identify
the specific features that contribute towards differentiating be-
tween location categories. For this purpose, Chi-squared statistic
evaluation [18] and CFS Subset evaluation [19] is applied to the
86 attributes and some of the features, which do not contribute to
the classification, are removed.

Chi-Squared Statistic: This statistic is used to evaluate the “dis-
tance” between the distribution of each class for an attribute. Ini-
tially, the values of an attribute are divided into separate intervals.
Based on this division, the frequency of instances in each inter-
val and class is calculated. Then the Chi2 value is calculated based
on Eq. (1) (with n = 2) for each pair of sorted adjacent intervals
to ascertain if the relative frequencies of the classes are similar
enough to justify their merging. If the Chi2 distance is smaller than
a certain threshold for the pair, the intervals are merged. Merging
continues till all adjacent pairs have a Chi2 value greater than the
threshold (20 in our case).

n k
(A,,_E..)Z
X =y y B

i=1 j=1

(1)

o Ajj = frequency of ith interval and jth class.
Ri*C;

o Ejj = expected frequency of A; = 1;’

o R; = number of values in ith interval = 3! | A;;

o G; = number of values in jth class = Z’]le Ajj

o k = number of classes

o n = number of intervals

o N = total number of values

At the end of this step, if an attribute has been merged into one
interval then the attribute is considered irrelevant in representing
the original data and hence has a Chi2 value of 0. Otherwise, the
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Fig. 6. Chi-square statistic score for the highest-correlated features for each subset
of statistical attributes.

score is calculated as per Eq. (1). Fig. 6 represents the normalized
Chi-squared statistic score of the statistical attributes based on (a)
coarse-grain features (b) protocol-based features (c) packet-based
features and (d) flow-based features.

CFS Subset Selection: Correlation Feature Subset (CFS) em-
ploys a simple correlation based heuristic to rank different subsets
formed out of the entire feature set. The objective of the heuristic
is to find subsets that contains features that are highly correlated
to the class and loosely correlated with each other. The CFS sub-
set evaluation function which determines the “merit” of a feature
subset is:

M= —— T )

Vk+k(k—=1)T755

where, Ms is the heuristic CFS Subset merit of a feature subset S
containing k features, ;; is the mean correlation value between
the features and the class where (f € S) and, 7y is the average
correlation value between two features in the subset. The numera-
tor of Eq. (2) can be interpreted as providing an indication of how
good the feature subset is, with high value of feature-class correla-
tion. The denominator represents how redundant the features are
among themselves, indicated by the value of the feature-feature
correlation.

Application of the CFS Subset feature selection algorithm on our
dataset of 86 features returns 10 features, which includes activity
period, percentage ON time for an IP, flow count, UDP flow count
and packet size per ip (mean), among others. The M; value for the
final selected feature subset is 0.482. This value tells us that the
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features have some level of redundancy and are not entirely non-
correlated.

On the basis of the feature selection results, we choose to use
CFS subset feature selection method. We remove 76 attributes from
our data-set and build our model for prediction based on the re-
maining 10 features. In addition we also provide an analysis of
how different subsets of features, based on how the features are
calculated and their computational complexity, can predict the dif-
ferent location classes, in Section 7. All prediction results shown
in Section 7 are based on a model built using the CFS subset at-
tributes (unless otherwise stated).

7. PACL prediction model and results

In this section we describe the PACL model, created on the basis
of the aforementioned features to efficiently predict users contex-
tual location.

7.1. Model : machine learning prediction algorithm

Predicting the location category from the statistical and appli-
cation based features is non-trivial as many of the statistical fea-
tures are dependent on each other and their inter-relationship is
non-linear. Different machine learning algorithms that are com-
monly used for traffic classification purposes have different com-
putational complexity and perform differently based on the dataset
properties. Kim, et. al, have used a number of machine learning al-
gorithms for traffic classification [11]. Similarly, we use a number
of machine learning classifiers to create the model involving these
individual features. In this section, we give a short description of
the algorithms.

7.1.1. Decision tree based algorithms

Reduced Error Pruning Tree: The algorithm implements a de-
cision tree with Reduced Error Pruning. Due to the non-linear na-
ture of the attributes the most prevalent algorithm used is decision
trees. Decision tree models employ simple if-then-else statements
which predict classes efficiently and are also human readable. An-
other very important advantage is that they do not require the fea-
tures to be independent among themselves. The algorithm imple-
ments a C4.5 decision tree using the information gain ratio of dif-
ferent features. The information gain of an attribute is the expected
reduction in entropy because of knowing the value of the attribute
[20]. Attributes with higher information gain are likely to be more
distinct among the classes, hence they are chosen first while build-
ing the decision tree from root to the leaves. The next step is the
pruning of the tree. Reduced error pruning starts at the leaves and
each node is replaced by the most popular class. If the accuracy of
the prediction of the class is not altered then the change is kept
and steps are repeated. Using the decision tree with pruning en-
ables our model to run faster as the tree size reduces. Therefore,
this algorithm has the capability to deal with noisy datasets con-
taining features that do not contribute towards the ultimate classi-
fication model in a substantial way. Due to these reasons, decision
trees are widely used in traffic classification [21].

Random Subspace: Decision Tree with Meta-learning: The
meta-learning classifier consists of multiple trees constructed sys-
tematically by pseudo-randomly selecting subsets of the feature
vector. Decision trees are constructed using random subsets of the
feature set. Thereafter, the decision of each tree on the data used
for prediction is combined together by averaging the conditional
probability of each class at the leaves [22]. Decision tree algorithm
overfits very easily. Meta-learning classifier helps to avoid overfit-
ting as, at each stage, only a subset of features are used for the
model.

7.1.2. Bayesian algorithms

Naive Bayes: This algorithm, which is based on the Bayes theo-
rem, analyzes the inter-relationship between each attribute of the
training dataset and the class for each prediction instance (fea-
ture vector). The algorithm assigns a conditional probability value
to the relationship between the values of the attributes and the
classes into which the entire data is classified [11,23,24]. Unlike
decision trees, this algorithm cannot remove features that do not
contribute towards the classification, and thus requires a thorough
feature selection pre-processing stage. Naive Bayes simply relies on
each attribute and its relationship with the class. It assumes each
of the features to be independent of the others. Due to these prop-
erties, it is often used in network traffic analysis [21], even though
it is known to perform poorly [23] as it cannot exploit the interde-
pendencies among the features

Bayesian Network: This is a probabilistic graphical model that
represents a set of features and classes and their probabilistic re-
lationship via a directed acyclic graph (DAG) [11,24]. Nodes repre-
sent features or classes, while links between nodes represent the
relationship between them. Conditional probability tables deter-
mine the strength of the links. Unlike Naive Bayes, this algorithm
does not treat the attributes as independent to each other. This al-
gorithm can find hidden inter-dependencies between the features
where they are interrelated. Our dataset has features which are
inter-dependent to a certain extent. A case in point is the num-
ber of bytes per flow and the number of packets per flow, which
have a direct proportional correlation. We use this algorithm as it
can maintain the simplicity of Naive Bayes while exploiting the re-
lations between the features that are possible in our feature set.

7.1.3. Artificial neural network based algorithms

Multilayer Perceptron: A MultiLayer Perceptron (MLP) is a
feedforward artificial neural network model that maps sets of fea-
ture vectors onto a set of appropriate classes [25]. A MLP consists
of multiple layers of nodes in a directed graph, with each layer
fully connected to the next one. Except for the input nodes, each
node is a neuron (or processing element) with a nonlinear activa-
tion function. MLP utilizes a supervised learning technique called
backpropagation for training the network. MLP is a modification of
the standard linear perceptron and can distinguish data that are
not linearly separable. In our dataset the attribute values do not
vary linearly with the four classes and hence MLP is considered a
valid candidate for machine learning algorithm.

7.14. k-nearest neighbor

If each feature vector is considered a point in a n-dimensional
space, where n is the number of features, this algorithm computes
Euclidean distances from each test instance to the k nearest neigh-
bors in that n-dimensional feature space [11]. An instance is clas-
sified by a majority vote of its neighbors, with the instance being
assigned to the class most common among its k nearest neighbors
(k is a positive integer, typically small). We include this algorithm
in our list of classifiers as it is shown to converge much faster than
the other classifiers especially in the case of network traffic analy-
sis with training flows less than 5000 [11].

7.2. PACL prediction accuracy

For the prediction of location category, the representative fea-
tures are extracted from an IP address. These features are then
used as an input (test data) in the aforementioned model and a
location category is predicted.

To check the prediction accuracy of our model we divide our
entire data set into n-folds and use n—1 folds for training and use
the remaining one fold as test data to predict the location class.
We repeat this step for the remaining n—1 sets of data. Here, we
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Table 4

PACL prediction accuracy for all machine learning algorithms.

Machine Learning Algorithm  Correct Instances (%)

Time taken to build the model

Area under ROC Curve

Naive Bayes 963 (54.97)
Multilayer Perceptron 1186 (67.69)
k-Nearest Neighbor 1224 (69.86)
REP Decision Tree 1433 (81.79)
Random Subspace 1541 (87.95)
Bayesian Network 1570 (89.61)

30 ms 0.808
275 s 0.870
5 ms 0.807
80 ms 0.923
110 ms 0.977
40 ms 0.986

consider n = 10. We use this 10-fold cross validation method on
the entire dataset of 1752 devices(or IPs), where 17.9% of instances
belong to residential context, 30.2% to university campus, 25.7% to
cafeteria context and the remaining 26.2 instances belong to the
airport contextual location.

We measure the efficiency of prediction of the location classes
on the basis of the following characteristics:

1. True Positive Rate: The fraction of instances correctly classified
as class A, among all instances actually belonging to class A =
%, where TP = number of true positives and FN = num-
ber of false negatives.

2. False Positive Rate: The fraction of instances which were
wrongly classified as class A, among all instances not belong-
ing to class A = % where FP = number of false positives
and TN = number of true negatives.

3. Area under ROC Curve: The Receiver Operating Characteristics
curve (ROC) plots the variation of false positive rate vs. true
positive rate for all the instances of the test data and for each
class. The ideal ROC curve approaches the top left corner for 1
true positive rate and O false positive rate. The area under the
ROC curve (€ [0,1]) gives an estimate of the effectiveness of the
prediction model. A perfect model has a ROC area of one.

4, Precision: The fraction of instances which actually belong to

class A, among all classified as class A = #ﬁ\lﬂ’l

The results of our model and its behavior under different ma-
chine learning algorithms is presented in Table 4. The table repre-
sents the number and percentage of correctly classified instances,
the time taken to build each model and the overall area under the
ROC curve. As mentioned before, a perfect model, has a ROC area
equal to 1.

We observe that while the Naive Bayes, Multilayer Perceptron
and k-Nearest Neighbor algorithms do not perform very well, the
results of Decision Tree and Random Subspace are acceptable. The
Bayesian Network model gives the best prediction accuracy, cor-
rectly predicting 1570 out of the 1752 instances giving a prediction
rate of 89.61%.

The performance of the different algorithms is as we expected:

- Naive Bayes treats all the attributes as independent which
is not the case for our dataset. Hence poor performance is
achieved when using this algorithm.

Multilayer Perceptron handles data that is not linearly separa-
ble and thus results in moderate performance. A major disad-
vantage of this algorithm is that the time taken to build the
prediction model is much higher than all the other algorithms
that we have dealt with.

k-Nearest Neighbor being a non-parametric learning algorithm,
does not make any assumptions on the dataset (e.g. linearly
separable). Thus with our real world dataset, the prediction ac-
curacy is moderate.

Decision Tree handles both non-linearity and non-
independence. Since our dataset is nonlinear and inter-
correlated, the results are relatively good. This algorithm also
works very well when there is a lot of noisy features. CFS Sub-
set removes all noisy features from the dataset. However, when

we use Chi-Squared feature selection, the ultimate dataset is
sufficiently noisy. In that case this algorithm gives the best
performance.

The CFS subset feature selection removes features that are very
redundant. The features that are left are slightly correlated
and these hidden inter-dependencies can be well identified by
Bayesian Network, leading to a good prediction accuracy. When
the dataset is noisy (as in the case of Chi Square filtered data),
the high number of inter-dependencies cannot be identified in
a very thorough way, resulting in a prediction model that per-
forms moderately well. Another advantage of this model is that
the PACL model can be built much faster than the decision tree
algorithms (almost half the time).

One of the major purposes of proposing PACL is to deliver
contextual location based services such as third party advertise-
ments or content suggestions to users. In the event of an error in
the classification, the content delivered to users will not be opti-
mized based on her location. Most targeted content delivery sys-
tems (specially advertisements) do not have access to users’ con-
text (as users block the sharing of private information). As a result,
the content delivered is not optimized under most circumstances.
The error rate of PACL signifies that a user will be misclassified
once out of every nine instances, which should not create any sig-
nificant inconvenience to the network usage experience.

To see how the algorithms perform for each location class, we
represent the location category-wise prediction results in Table 5.
The prediction is weakest for residential location category across
all the different algorithms. The major reason behind this is the
lower number of data points (or feature vectors) representing the
location category residence as compared to the other 3 locations.
The location category residence has around 300 feature vectors
whereas all other locations have in excess of 450. However, using
Bayesian Network algorithm we see that the prediction accuracy
of residential location is not so different from the others and that
all the locations have a TP rate which falls within 0.051 of each
other (from 0.911 to 0.860). Overall, we observe that airport loca-
tion category has the best prediction accuracy, whereas cafeteria
and campus dataset show similar prediction efficiency.

As the Bayesian Network and the Random Subspace algorithms
give us the best accuracy, we look at some of the results for these
in more details. We present the confusion matrix for prediction us-
ing both the algorithms in Table 6. Each element in the table is
represented as (x,y) where x is row number representing the num-
ber of IPs actually belonging to that class, and y is column num-
ber representing the number of IPs predicted in the corresponding
class.

The ROC curves for each algorithm for the 4 location categories
are shown in Fig. 7b. The figure as well as Table 5 reconfirm that
the prediction is most effective for airport traces whereas resi-
dence traces show least effectiveness. However, the ROC curves for
the Bayesian Network algorithm are more close together, which
confirms our observation above that Bayesian Network gives simi-
lar prediction accuracy. Hence the results are very good. for all the
location categories.



(a) Decision tree model based on training data of 1752 instances using Random Subspace

Table 6

Table 5
PACL location-wise prediction results : TP and FP rates are calculated for one class against all the
other three classes in our dataset.
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Airport

Algorithm Location Class TP Rate  FP Rate  Precision  ROC Area

MultiLayer Perceptron  Airport 0.817 0.075 0.794 0.925
Cafeteria 0.733 0.165 0.606 0.857
Campus 0.614 0.113 0.702 0.856
Residence 0.498 0.081 0.575 0.832
Combined Results  0.677 011 0.678 0.870
k-Nearest Neighbor Airport 0.751 0.065 0.804 0.844
Cafeteria 0.711 0.117 0.678 0.811
Campus 0.684 0.129 0.696 0.789
Residence 0.629 0.093 0.596 0.779
Combined Results  0.699 0.103 0.702 0.807
REP Decision Tree Airport 0.873 0.072 0.811 0.945
Cafeteria 0.836 0.065 0.817 0.913
Campus 0.839 0.072 0.835 0.938
Residence 0.676 0.038 0.798 0.882
Combined Results  0.818 0.064 0.817 0.923
Random Subspace Airport 0.950 0.057 0.855 0.989
Cafeteria 0.882 0.045 0.871 0.975
Campus 0.902 0.043 0.902 0.971
Residence 0.737 0.018 0.899 0.952
Combined Results  0.880 0.043 0.881 0.977
Bayesian Network Airport 0.910 0.056 0.851 0.985
Cafeteria 0911 0.028 0.917 0.987
Campus 0.892 0.020 0.952 0.989
Residence 0.860 0.033 0.850 0.978
Combined Results  0.896 0.034 0.898 0.986
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Fig. 7. Decision tree and ROC curves for PACL prediction model.

Confusion matrix for PACL prediction.

(a) Random Subspace

Classified Class  Airport  Cafeteria ~ Campus  Residence
Airport 435 5 8 10
Cafeteria 24 397 23 6
Campus 17 25 477 10
Residence 33 29 21 232
(b) Bayesian Network
Classified Class  Airport  Cafeteria ~ Campus  Residence
Airport 417 6 15 20
Cafeteria 26 410 4 10
Campus 20 19 472 18
Residence 27 12 5 271

In Fig. 7a, we plot a pruned version of our decision tree model
(built using all the CFS subset features). The model shows that the
attribute “activity period” has the highest information gain. Fig. 3d
shows that the variation of activity period across different location
classes is very distinct and hence activity period is most effective
in distinguishing the location categories. Fig. 6 shows that this at-
tribute has the highest Chi-squared statistic score. Among all the
application based features “the percentage of flows destined to ed-
ucation & career websites” has the highest information gain. The
dataset we collect is in a university town (Davis,CA) where the
access of school websites is prevalent in almost all location cat-
egories. But the amount of usage varies very distinctly at the cam-
pus location context, as compared to other locations, as seen in
Fig. 5 - hence contributing to high information gain. The nodes



34

Table 7
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PACL model accuracy using different feature-vector subsets for different machine learning models : for each feature subset, CFS subset
feature selection is applied and then the model is built. Number of features in each subset after feature selection is shown in Table 8.
All results are represented in the form of the percentage of correctly classified instances.

Machine Learning Algorithm  Coarse Grain ~ Protocol Based  Flow Level  Packet Level  Application Based  All features
Naive Bayes 41.27 3339 45.32 34.98 35.44 54.97
Multilayer Perceptron 46.63 40.72 47.58 41.78 431 69.69
k-Nearest Neighbor 67.35 64.56 51.59 52.97 38.81 69.86
REP Decision Tree 72.83 7517 58.22 67.01 43.04 81.79
Random Subspace 80.02 83.39 62.38 70.21 42.47 87.95
Bayesian Network 73.12 81.84 58.79 71.86 43.55 89.61

Table 8

PACL prediction model accuracy using different feature-vector subsets
and then using the Bayesian Network prediction algorithm.

: all the models are built after applying CFS subset feature selection

Feature No. of No. of Correctly TP Rate  ROC Attributes
subset Features Features Classified Area with highest
(original set)  (CFS Subset)  Instances (%) information gain
Coarse-Grain 7 2 1281 (73.12) 0.731 0.909  Activity period, Flow count
Protocol Based 4 4 1434 (81.85) 0.818 0.953 UDP flow count, HTTP flow count
Application data rate per flow: std. devn.,
Flow Level 26 9 1030 (58.79) 0.588 0.824  Flow length : max, min
Bytes per flow: mean
Packet size:max, Packet size:median,
Packet Level 14 5 1259 (71.86) 0.719 0.903 Packet inter-arrival time: max
Education and Career
Application Based 33 4 763 (43.55) 0.436 0.693  Emails, Netflix, Games
Activity Period, Flow throughput:avg,
All Features 86 10 1570 (89.62) 0.896 0.986  Education and Career

Flow count, Packet Size:max

near the root of the tree includes attributes that belong to all the
different subset of features, which shows that the combination of
the features are required for efficient prediction. It is also observed
in Fig. 7a that the top portion of the tree has no class of cafeteria.
We have observed that at least 6 attributes are required to deter-
mine the location to be a cafeteria in the best case, whereas that
count is 2 for campus, 3 for residence and 4 for airport.

7.3. Prediction accuracy with feature subsets

We predict contextual location based on a number of features
which are indicative of network usage patterns of various users.
Combination of all features give a good prediction accuracy. But a
question may arise as to how a certain subsets of features, calcu-
lated on the basis of a particular aspect of an IP address, contribute
towards to the accuracy. Performance of the individual subsets of
features using the same model and under the same experimen-
tal conditions is evaluated. The percentage prediction accuracy us-
ing the 4 sets of statistical features and the application based at-
tributes mentioned in Section 5 and comparison with the overall
results is shown in Table 7 for all of the machine learning algo-
rithms used. In addition, Table 8 lists the prediction accuracy for
the PACL model built using Bayesian Network in details. The ta-
ble also lists the number of attributes, before and after CFS subset
feature selection, TP rate, ROC area and the features that have the
highest information gain in each of the attribute subsets.

In our analysis, the statistical features are calculated based on
high-level statistics and header information. Payload information is
used only in the categorization of application interest among users
at various locations. Certain commercial tools [26] are available for
extracting application based information systematically from the
packet payload [27], more commonly known as Deep Packet In-
spection (DPI). There are multiple issues with using DPI. First, most
flows in modern day internet traffic are encrypted and hence can-
not be decoded. Secondly, looking into the payload leads to privacy
leakage issues from users’ point of view. Thirdly, this procedure is

resource and time intensive. Even though we have looked into pay-
load for the application-based features, we have applied a keyword
based search and did not look into the specific content accessed by
users. An efficient tool to look into the content accessed by users
might help us to distinguish between the applications better and
in turn improve the result.

Extracting some of the features from the network traffic by
an ISP is computationally simpler and faster for some attributes
compared to others. In our feature subset, coarse-grain statistics,
like flow count, number of flows belonging to different protocols,
packet count, activity period count, etc., are easier to calculate as
they are count-based statistics. The other feature values either de-
pend on a particular distribution (packet level and flow level statis-
tics) or require us to look into the payload (application level cate-
gorization).

It is observed from Table 7 that only the coarse-grain and pro-
tocol based statistical feature subsets individually give highest pre-
diction accuracy in all the models as compared to the other sub-
sets. As a result, we can say, these features are most efficient con-
tributors in our prediction model among all the subsets. The low
computational complexity involved in calculating these features for
each user is specifically important for real-time prediction. In sit-
uations when the prediction has to be done without much delay,
the PACL model can use these feature sets and get a prediction ac-
curacy upto 83%.

8. Conclusions

In this paper, we present a model for prediction of users’ con-
textual location by network traffic analysis. Using real world traces
we train our model on the basis of statistical and application-based
features, to classify users’ into four representative contextual loca-
tions. The PACL prediction model, in our test case, gives an accu-
racy upto 89%. Decision tree with metalearning and Bayesian Net-
work algorithms give the best prediction accuracy. However, the
preferred algorithm is Bayesian Network as it gives similar effi-
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ciency of prediction among all the location classes and the model
is built faster.

There are multiple directions of future work. First, looking into
the payload of packets is computationally expensive and as a re-
sult, we believe that the application based categorization has a
scope for improvement. Next, the application of PACL to predict
flash-mobs or events (short term gathering) is another scope of the
work. If the PACL classification has more than four classes, there
would be an overlap of characteristics between the different lo-
cation classes and machine learning algorithms might not be effi-
cient to identify which distinguishing characters are there in the
dataset. In that case, clustering of users based on their application
usage would help us identifying the different location categories
and give better accuracy than the machine learning algorithms.
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