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ABSTRACT Clustering algorithms are a class of unsupervised machine learning (ML) algorithms that
feature ubiquitously inmodern data science, and play a key role inmany learning-based application pipelines.
Recently, research in the ML community has pivoted to analyzing the fairness of learning models, including
clustering algorithms. Furthermore, research on fair clustering varies widely depending on the choice of
clustering algorithm, fairness definitions employed, and other assumptions made regarding models. Despite
this, a comprehensive survey of the field does not exist. In this paper, we seek to bridge this gap by
categorizing existing research on fair clustering, and discussing possible avenues for future work. Through
this survey, we aim to provide researchers with an organized overview of the field, and motivate new and
unexplored lines of research regarding fairness in clustering.

INDEX TERMS Machine learning, clustering, fairness, fair clustering.

I. INTRODUCTION
Machine Learning (ML) has been used to tackle many impor-
tant problems, many of which can have significant societal
implications. Some of these problems include predicting the
likelihood of prisoner recidivism [1]–[5], disbursement of
bank loans [6]–[8], shortlisting candidates for job applica-
tions [9]–[13], and college admissions [14]–[16]. Since ML
models train on large datasets that have been found to contain
biases against both individuals and minority groups, they can
further amplify biases when used in high-impact applications.
This has been evidenced in many ML applications where
fairness was not considered to be an evaluation criteria. Some
examples are Microsoft’s Tay online chatbot which learned
from tweets and due to biased inputs started using racist
slurs [17], and the COMPAS tool which predicted that a black
individual is more likely to commit a crime [18] than a white
individual even if both individuals are statistically similar
with regards to other attributes.

To rectify models and correct for unfairness, ML
researchers have recently begun to propose approaches that
ensure fairness constraints aremet [19]–[25]. However, defin-
ing fairness notions is not a trivial task, and is often done
based on application and legal context. For example, fairness
can be defined for minority protected groups (such as for
ethnicity, gender, etc) [26] or for individuals (that is, sim-
ilar individuals should be treated equitably) [27], and both
possess certain advantages and disadvantages depending on
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where they are being utilized. It has been found that differ-
ent notions of fairness are generally incompatible [28], [29]
with one another and cannot be jointly optimized for, further
compounding the difficulty of the problem.

Clustering algorithms are unsupervised ML algorithms
that are widely utilized in problem settings where labels are
not easily available (such as resource allocation problems).
Moreover, recently, the issue of fairness for clustering has
received considerable attention in the ML community, pio-
neered by the first work on fair clustering by Chierichetti
et al [30] in 2017. However, ensuring fairness for clustering is
harder than the generalML case, as labels are not present with
the data, and ground-truth error rates cannot be calculated to
estimate bias and unfairness. This makes both defining and
enforcing fairness for clustering, challenging problems.
Due to this reason, many different fairness notions for

clustering exist (for example [30]–[34]), with different
research papers opting for different metrics, or proposing
new ones. Furthermore, techniques for ensuring fairness
constraints are met vary widely in methodology; compar-
isons between different fair approaches are usually made
selectively, and there are no established (fairness and per-
formance) metrics that are adopted for comparison. There
are also no surveys or review articles that have been com-
piled for fair clustering approaches. This is in stark con-
trast with other ML sub-fields, where multiple surveys
exist– such as for recommendation systems [35], natural lan-
guage processing models [36], learning to rank models [37],
and sequential decision-making approaches [38], among
others.
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Therefore, we aim to bridge this gap and organize the field
through this article. Our goal is to provide both existing and
new researchers in fair clustering with an overview of the
field, along with new insights. We categorize the myriad of
approaches in fair clustering similar to other ML survey arti-
cles, and provide many different classifications for fairness
notions for clustering. Our work also discusses real-world
applications for fair clustering as well as datasets used for
evaluating fair clustering approaches. Thus, the article can
also serve as a tool for ML practitioners aiming to utilize fair
clustering in their applications. To summarize, the contribu-
tions of this work are as follows:

• We provide the first survey on fair clustering that orga-
nizes the field and categorizes fair clustering approaches
similar to other ML surveys.

• We classify the many different available fairness notions
for clustering, provide details regarding the evaluation
of fair models, and the datasets frequently used for the
same.

• We discuss motivations for clustering using real-world
applications to aid ML practitioners, and also provide a
multitude of new research directions for the field.

The rest of the paper is structured as follows: Section II
details relevant background regarding clustering and fair-
ness in ML. Section III discusses different fairness notions
employed for clustering and how they can be organized into
intuitive sub-categories. Section IV describes the different
approaches used to make clustering fair. Section V examines
the datasets used for evaluating fair clustering, and motivates
the research problems related to fair clustering through real-
world applications. Section VI provides insights and analysis
for future work in fair clustering, and Section VII concludes
the paper.

II. PRELIMINARIES AND NOTATION
In this section, we briefly discuss the working of clustering
algorithms and give an overview of the different approaches
used to make ML models fair. We also detail the notation and
symbols used throughout the paper.

A. CLUSTERING ALGORITHMS
Formally, a clustering algorithm A seeks to partition a
given input dataset X ∈ Rn×m into some k ≤ n clus-
ters. Moreover, each sample x ∈ X can belong to one
(hard clustering) or more (soft clustering) of the k clus-
ters, depending on the clustering objective used. Let C =
{C1,C2, . . . ,Ck} denote the output partition set obtained
by running the clustering algorithm A, where Ci ⊆ X ,
∀i ∈ [k]. As there are no labels present for the data sam-
ples, X is both the training dataset and the testing dataset
for the clustering problem. This is different from traditional
supervised learning and classification tasks, where training
datasets and test datasets are separate. The unsupervised
nature of the clustering problem also further complicates the
issue of defining and enforcing fairness, which we discuss in

FIGURE 1. An example demonstrating the general clustering process
(different colors represent different clusters).

subsequent sections. It is important to note that most clus-
tering objectives (such as k-means, hierarchical clustering,
k-medoids, etc) are generally NP-Hard [39]–[41] and are
usually solved using algorithms that approximate the opti-
mal solution [42], [43] or through heuristic approaches [44].
For example, for the widely used k-means clustering objec-
tive [40], the expectation-maximization based Lloyd’s algo-
rithm is used [44] as a heuristic which works very well in
practice.

Another distinguishing feature of clustering algorithms is
that the number of clusters k could be given as an input to
the learning model or obtained via the clustering optimiza-
tion problem itself. For example, in center-based clustering
algorithms such as k-means [44] or k-medoids [43], k is an
input parameter, but hierarchical clustering algorithms [39],
[45], [46] output a tree of clusters, with each level of the tree
indicating a possible choice of k ≤ n that the user can opt for.
Other algorithms such as Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [47] and Ordering
Points To Identify the Clustering Structure (OPTICS) [48]
also do not require number of clusters as input, but infer
a single value for k from the dataset provided. We defer
the reader to [49] for more details on different clustering
algorithms.

Unless otherwise specified, we generally consider hard
clustering for example scenarios in this article, that is each
point can only belong to one cluster. In Fig. 1, we provide an
overview of the aforementioned general clustering process.
The original dataset X is provided as input to the clustering
algorithm A and we obtain the cluster partition set C =
{C1,C2,C3,C4} as output, shown in blue, red, yellow, and
green respectively.

B. A BRIEF TAXONOMY OF CLUSTERING METHODS
Many different clustering methods have been proposed to
partition data into meaningful clusters, and a preliminary
knowledge of these is useful before delving into the numer-
ous approaches proposed for fair clustering. For ease of
understanding, we borrow from (and slightly modify) the
classifications originally proposed by Xu and Wunsch [49]
for differentiating data clustering methods. As a complete
in-depth discussion is out of the scope of this work, we refer
the reader to the surveys [49], [50] for more details on
approaches for clustering data.

Clustering algorithms can be generally categorized into the
following:
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1) CENTER-BASED CLUSTERING
These approaches aim to partition the input dataset into
clusters by minimizing an error metric between data sam-
ples assigned to a cluster, and their corresponding cluster
centers. Depending on the defined error metric, cluster cen-
ters can be either the mean of the samples in the clus-
ter (such as in k-means [44]), or the median of samples
in the cluster (such as in k-medoids [43]), among many
other possibilities. The most common approach for this cat-
egory is k-means where the error term is defined to be
the squared Euclidean distance between cluster samples and
cluster centers [51]. Many different variations for k-means
have been proposed that improve upon the original heuristic
algorithm [52]–[54]. Other methods include k-medoids [43],
Iterative Self-Organizing Data Analysis Technique (ISO-
DATA) [55], among others.

2) HIERARCHICAL CLUSTERING
Hierarchical clustering approaches aim to partition the
dataset into hierarchies, with the clustering output repre-
sented as a binary tree. The root node represents the entire
dataset while the leaf nodes comprise of the singular sam-
ples of the dataset. The remaining nodes of the tree rep-
resent clusters, and in this way, a hierarchy of clusters is
obtained. Agglomerative hierarchical clustering algorithms
aim to build this tree in a bottom-up fashion, whereas divisive
hierarchical clustering algorithms seek to do so in a top-
down fashion. Some examples of agglomerative hierarchical
clustering algorithms include Clustering Using Representa-
tives (CURE) [56], Ward’s method [57], Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH) [58],
Robust Clustering using Links (ROCK) [59], among others.
For divisive hierarchical clustering, examples include the
Divisive Analysis algorithm (DIANA) and Monothetic Anal-
ysis algorithm (MONA) [60]. Recently, analytical objectives
for hierarchical clustering have also been proposed [39], [45],
[46] which have lead to the development ofmore theoretically
robust hierarchical clustering algorithms.

3) MIXTURE MODEL-BASED CLUSTERING
Mixture model-based clustering refers to a probabilistic clus-
tering approach where points are assigned to clusters in
a soft manner, and do not have hard memberships. Fur-
thermore, data points are assumed to originate (and belong
to) some mixture of probability distributions. In this clus-
tering approach, the nature of distributions are generally
assumed (very often to be a mixture of multivariate nor-
mal distributions). Then the clustering task transforms into
finding the set of parameters for this mixture of distribu-
tions that maximize a metric such as log-likelihood (or how
likely a point is determined to belong to a particular clus-
ter). Popular clustering approaches that belong to this cate-
gory are Gaussian-Mixture-Model based Expectation Maxi-
mization (GMM-EM) [61], ExpectationMaximization-based
Mixture program (EMMIX) [62], and AutoClass [63],
among others.

4) GRAPH-BASED CLUSTERING
Graph-based clustering approaches utilize concepts from
graph theory to cluster the data. This first requires translating
the original dataset into a graph problem, by treating data
samples as nodes/vertices in a graph, and creating edges
between samples using a dissimilarity/similarity metric. The
dissimilarity/similarity metric is usually defined using a dis-
tance metric between points. Then, edges can be created
between nodes if points are within a certain distance thresh-
old, often using a k-nearest-neighbor graph [64]. On obtain-
ing a graph describing the original data, the Laplacian matrix
can be obtained. Clustering using k-means (or other simple
clustering algorithms) is then undertaken on the eigenvec-
tors of the Laplacian, and the original data samples can
be assigned the same cluster labels [65]. Depending on the
choice of the graph Laplacian, different spectral cluster-
ing outputs can be obtained [66]. Many other graph-based
clustering approaches also belong to this category, such as
Clustering Identification via Identity Kernels (CLICK) [67],
Delaunay Triangulation Graph based clustering (DTG) [68],
among others.

5) FUZZY CLUSTERING
Fuzzy clustering algorithms consist of soft clustering
approaches where data samples have fuzzy memberships (a
grade of membership between 0 and 1) to clusters instead of
binary cluster assignments. The most popular fuzzy cluster-
ing method is Fuzzy C-Means (FCM) [69]. Many improve-
ments have been made upon FCM, including methods that
more easily identify centers [70], generalize the algorithm to
arbitrary distance metrics [71], reduce time complexity [72],
and more. Fuzzy clustering can also be combined with hierar-
chical clustering, as was done in Hierarchical Unsupervised
Fuzzy Clustering (HUFC) [73].

6) COMBINATORIAL SEARCH-BASED CLUSTERING
Exactly solving most clustering optimization objectives can
be NP-Hard as there often exists an exponential search space
of clustering solutions. Thus, the clustering problem can be
reformulated as a combinatorial optimization problem, and
local search approaches can be used to approximate the opti-
mal clustering solution. Most often, due to the hardness and
generality of the problem, evolutionary approaches [74] are
used for the search algorithm, such as Simulated Annealing
(SA) [75], Genetic Algorithms (GA) [76], etc. Clustering
approaches that belong to this category include Geneti-
cally Guided Algorithm (GGA) for clustering [77], Genetic
k-means Algorithm (GKA) [78], among others.

C. FAIRNESS IN ML
Fairness for ML models can be enforced/ensured in three
stages of the learning pipeline [17], [79], [80]; in the
1) before-training, 2) during-training, or 3) after-training
phase:

1) The before-training stage requires that the original data
be pre-processed to obtain a new dataset. On train-
ing/running the unchanged ML model on this new
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FIGURE 2. The general ML/fairness pipeline.

dataset, the output predictions will meet the fairness
constraint.

2) The most common approach to improving fairness
for ML models is the during-training or in-processing
stage, where the MLmodel itself is modified to include
the fairness constraints. This involves changing the
optimization and training process such that the out-
put predictions are fair, without changing the original
dataset.

3) Finally, fairness can be enforced after-training as well,
where the predictions from the original model undergo
a post-processing procedure to compute a similar set of
predictions such that they nowmeet the desired fairness
constraints.

We detail these methodologies in the context of the learn-
ing pipeline in Fig. 2. As mentioned before, since clustering
is an unsupervised learning problem where training and test
datasets are the same, the diagram shown in Fig. 2 will
also change accordingly to account for this. We thus discuss
approaches specific to clustering in Section IV of the paper,
which build upon the high-level schematic of Fig. 2. We do
not discuss how fairness of general ML models (such as for
classification, computer vision, etc.) can be measured via
analytical metrics as this is outside the scope of this work.
We discuss fairness metrics and notions specific to clustering
in Section III of the paper, but interested readers can refer
to [17] for more information on fairness notions for general
ML models.

III. FAIRNESS NOTIONS FOR CLUSTERING
In this section we discuss the different notions of fairness that
are generally employed for clustering. As mentioned before,
fairness notions are often application specific and a partic-
ular definition might be more preferable in certain settings
compared to others. For example, consider an adapted version
of the application scenario provided in [31]. We have to find
where to set up three (=k) parks for a given set of houses
in a region. For this, we can use center-based clustering
algorithms where each center could denote a possible park
location. In this region, we have two dense city sub-regions
with housing highly localized in smaller area, and a resi-
dential sub-region which encompasses large area but is less
dense than the city. This scenario is shown in Fig 3. Now, if a
general center-based clustering algorithm (such as k-means)
was used, we would obtain a single cluster center (park)
to share for the city sub-regions whereas the larger-sized
suburban sub-region would get two parks.

This is unfair to the individuals living in the dense
sub-regions and hence, this application requires a definition
of fairness which warrants proportionally shared cluster cen-
ters. A fair solution (in this context) would distribute two
centers for each of the two dense city sub-regions and one
park for the larger/sparser sub-region. Thus, the definition
of proportionality proposed by [31] is more suitable than
other fairness notions (such as the most commonly used
balance proposed by [30]). The former captures the idea that
data samples are individuals and fairness to these individuals
means being clustered in an accurate manner with regards
to their dataset features and cluster centers. The latter on
the other hand, aims to capture the degree to which points
belonging to protected groups are represented in each output
cluster. It is then evident that for the example considered
above, proportionality is the better fairness notion. Note that
proportional fairness is also more apt for this scenario as it
does not require protected groups (in contrast with balance
which explicitly requires groups) and can be tailored to the
fairness requirement at the sample level.

The above example then introduces an interesting research
question: are there ways to distinguish clustering fairness
notions from each other? We answer this question in the
affirmative by introducing four different classifications for
fairness definitions: group-level, individual-level, algorithm
agnostic, and algorithm specific fairness. Fairness notions
can belong to more than one category as well. As fairness
notions for clustering have not been formally categorized
before, we aim for these to be a simplistic first step in doing
so; many other different classifications/categorizations are
possible. Subsequently, we explain each category individu-
ally and then provide existing definitions/analysis using our
proposed categories for all fair clustering notions proposed to
date.

A. GROUP-LEVEL NOTIONS
Group-level fairness notions are usually derived from the Dis-
parate Impact (DI) doctrine [81] which states that no group of
individuals should be adversely affected by the outcome of
a decision-making system. That is, no group of individuals
should be discriminated against or overtly preferred by an
algorithm in terms of the output predictions made.

This category of fairness can be understood through an
example. A dataset, e.g., the creditcard dataset [82], is used
by the marketing division of a bank to reach out to prospec-
tive customers and offer them loans and available credit
opportunities. The dataset contains features such as the poten-
tial customer’s age, their education level, their weekly work
hours, and their capital gains per month. The bank utilizes a
clustering algorithm to find target audiences for promotional
offers and uses the aforementioned attributes as input to the
clustering algorithm. That is, on running the algorithm, they
obtain clusters of people who are then (using some met-
rics, e.g., the education and wages-earned features) grouped
together to be targeted for a particular promotion/offer. It is
important to note here that people-of-color (POC) as well as
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FIGURE 3. Example scenario for understanding fairness notions for clustering.

women, tend to earn lower wages than white males [83], and
that POC face more adversities that lead to disparities in their
education level [84] as opposed to white demographics. Now,
considering these facts on the racial education divide and the
wage gap, a clustering algorithm using these attributes will
inherently group white households as well as men, as better
candidates for better deals and offers (such as mortgages
and loans). As a result, this marketing clustering algorithm
has disparate impact on POC as well as women, as they
are deprived of an opportunity of improvement. Therefore,
it is important to study protected groups (e.g., ethnicity and
gender) and the corresponding fairness in such a clustering
setting. Group-level fairnessmeasures thus aim to capture this
setting in an analytical manner.

An example of a group-level measure is the balance notion
first proposed by [30] and then generalized by [85]. It requires
calculating the ratio between the proportion of total protected
group members in the dataset and the proportion of protected
group members in a cluster, and the balance of the clustering
is then the minimum value obtained over all clusters and
protected groups. As a result, it always lies between 0 and 1,
with higher values indicating a clustering output that is more
fair. We also found that balance is the most commonly used
fairness notion for most research on fair clustering.

Other group-level fairness notions include bounded repre-
sentation [86] which considers two parameters α and β which
denote the allowed maximum and minimum proportions of
protected group members that can be present in a cluster.
Thus, through this notion no protected groupmembers should
be over or under preferred for each cluster. Another example
is the Max Fairness Cost (MFC) proposed in [32] which is
similar to balance but takes a user-inputted ideal proportion
value as well. It measures the deviation of the current propor-
tion of protected group members in a cluster from this ideal
proportion using the L1 norm. We discuss other categories
next and then provide a complete tabular list of group-level
fairness notions in Table 1.

B. INDIVIDUAL-LEVEL NOTIONS
Individual-level fairness notions are significantly different
from the group-level fairness notions. Here, we do not have
any protected groups, and the goal is to ensure that simi-
lar individuals (samples in the dataset) are treated similarly
by the ML model. That is, a clustering model abiding by
individual-level fairness would cluster all individuals that are
deemed similar using some dissimilarity metric in a similar
manner. The proportional notion of fairness [31] discussed
before is an example of an individual-level fairness notion
for clustering.

Individual-level fairness for clustering has not been stud-
ied as extensively as group-level fairness, and most works
only focus on facility location and center-based clustering.
The differences in these individual-level fairness definitions
stem from 1) how the dissimilarity metric is defined between
individuals, and 2) how similarity is measured with regards
to the output clustering. In [87] the authors assume that
the dissimilarity metric is available as a distance metric
d , and that a clustering satisfies individual-level fairness if
for each individual sample in the dataset the average dis-
tance (measured using d) to samples in its cluster is less
than the average distance (measured using d) to any sam-
ples in other clusters. In [34] and [88] the authors pro-
vide an alternative definition for individual-level clustering
fairness: every sample in the dataset should have a center
within a distance R where R is the minimum radius of the
ball centered around the sample that contains at least n/k
(total samples over number of clusters) samples. In [89]
individual-level fairness is extended for the clustering set-
ting from the seminal work of [26] for classification. Here,
the authors consider soft clustering outputs and as the clus-
tering is probabilistic they enforce individual-level fairness
through distributional similarity of the cluster outputs. Very
recently, more research has emerged on individual fairness
for clustering [90]–[94], and we cover these in more detail in
Section IV.
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FIGURE 4. Group-level and individual-level fairness notions for clustering
can have conflicting cluster assignments (colors indicate clusters and
diamonds/circles indicate protected group memberships).

As mentioned previously, different fairness notions can
often not be applied together. This is true for group-level and
individual-level fairness notions for clustering. In particular,
in [95] and [96], the authors find that forcing group-level fair-
ness can adversely affect individual-level fairness between
similar individuals. This can also be seen through a simple
example shown in Fig. 4 which has been adapted from [89].
Here, different protected groups are denoted using differ-
ent markers and different cluster assignments are denoted
using different colors. The cluster assignments required to
meet group-level fairness (for example, enforced through
balance) are shown on the left and the cluster assignments
to satisfy individual-level fairness are shown on the right
in Fig. 4. This is because for group-level fairness each group
needs to be represented in a cluster in similar proportion
whereas for individual-level fairness we would like closely
distanced (similar) points to be clustered together (similarly).
As can be seen from the figure, these are mutually exclusive
cases, hence only one notion of fairness can be enforced at a
time. We provide a complete list of individual-level fairness
notions in Table 1 towards the end of this section.

C. ALGORITHM AGNOSTIC NOTIONS
We also categorize fairness notions based on whether they
are designed specifically for certain clustering objectives or
can generalize to any given objective. Algorithm agnostic
notions are generally defined for the cluster output level and
can thus generalize for all clustering objectives. For example,
the first proposed fairness notion balance [30], [85] discussed
previously, essentially operates with cluster outputs given by
any clustering algorithm. This makes it an algorithm agnostic
fairness notion.

Note that any fairness notions which do not make explicit
assumptions regarding clustering algorithms, but implicitly
require specific clustering behavior are not considered as
algorithm agnostic. For example, for the proportional fair-
ness notion [31], while there is no explicit clustering algo-
rithm mentioned in the definition, the notion requires clus-
ter centers, thus limiting it only to center-based clustering
objectives. Furthermore, both group-level and individual-
level fairness notions can be algorithm agnostic. We also find
that most group-level fairness notions are algorithm agnostic.
Algorithm agnostic notions are tabulated towards the end of
the section (Table 1).

D. ALGORITHM SPECIFIC NOTIONS
Algorithm specific fairness notions constitute fairness
notions that work specifically for certain clustering objectives

and algorithms. One example is the k-means social fairness
cost, proposed by [33]. In their work, the authors define a
fair clustering to be one where the average k-means cost
for each protected group is minimized. While this aspect
of social fairness could be extended to other learning tasks,
the current work seeks to do so for k-means, making it
specific to center-based clustering objectives. Other exam-
ples include proportional fairness proposed by [31] and the
individual-level fairness notions of [34], [88] as they only
work with center-based clustering. A full list is provided
in Table 1.

E. DEFINITIONS FOR COMMONLY USED NOTIONS
In this subsection, we provide mathematical definitions for
some commonly used fairness notions. However, due to the
multitude of different notions proposed, we defer the list of all
notions to Table 1 and provide pointers to appropriate related
works that discuss and define these notions there.

We now provide technical definitions for the following
fairness notions:

1) BALANCE
The group-level and algorithm agnostic fairness notion of
balance was first proposed by Chierichetti et al. [30] for the
case with 2 protected groups. It was later generalized to the
multiple group case by Bera et al. [85]. Since then, balance
has been employed as the fairness metric for most research
on fair clustering [97]–[100].

Let there be m protected groups. Then, define r and ra
to be the proportion of samples of the dataset belonging to
protected group b and the proportion of samples in cluster
a ∈ [k] belonging to protected group b. Then define another
ratio for this cluster and protected group as Ra,b = r/ra. The
balance fairness notion is then defined over all clusters and
protected groups as:

min
a∈[k],b∈[m]

min{Ra,b,
1
Ra,b
}

As can be seen through the definition, balance lies between
0 and 1, and the higher the value, the more fair the clustering
output. That is, a fair algorithm will attempt to maximize
the notion of balance. This is usually done as a constraint
to ensure that the balance is either lower-bounded or upper-
bounded by a required pre-defined input value.

Some authors implicitly utilize the balance fairness notion
but reformulate it to aid theoretical analysis. One such exam-
ple is in [101] and [102]. Let there be m protected groups,
and samples of dataset X in cluster a that belong to group
b are denoted using the set Ga,b. Then, define for cluster
a, Ja = minb∈[m]Ga,b and La = maxb∈[m]Ga,b. Then the
reformulated notion of balance is:

min
a∈[k]

Ja
La

As is evident, this also outputs a value between 0 and 1,
and the authors also provide theoretical analysis to show that
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minimizing this notion of fairness is equivalent to minimizing
the original 2-group balance notion proposed by [30].

2) SOCIAL FAIRNESS
The social fairness cost was proposed by Ghadiri et al. [33]
for the k-means clustering objective. A similar notion of
group representative fairness was developed by
Abbasi et al. [103] for k-means and k-medians. Markarychev
and Vakilian [104] generalized the social fairness problem,
but here we present the k-means case as originally defined.
In its current formulation, this fairness notion is algorithm
specific, as it can only be used for center-based clustering.

Assume here also without loss of generality that there arem
protected groups. Define the k-means clustering cost for a set
of k cluster centers U and the input dataset X as O(U ,X ) =∑

x∈X minu∈U ||x−u||2. Also, let Xa denote the samples of X
that belong to protected group a. Then the social fairness cost
for k-means clustering becomes:

max
a∈[m]

O(U ,Xa)
|Xa|

As the above notion is a cost, it needs to be minimized
unlike balance which was to be maximized. That is, the lower
the social fairness cost the more fair the clustering.

3) BOUNDED REPRESENTATION
The notion of bounded representation was proposed by
Ahmadian et al. [86]. It is a group-level notion and can be
defined using two parameters α and β. The fairness notion
is defined through constraints that need to be imposed and
met for each cluster obtained via the clustering algorithm. Let
Pa,b be the proportion of protected group b ∈ [m] members
in cluster a ∈ [k]. Then, for (α, β)- bounded representation
we require that:

β ≤ Pa,b ≤ α, ∀ a ∈ [k], b ∈ [m]

Essentially, unlike the other notions discussed previously,
this notion is defined as a set of constraints. If all the fairness
constraints for each group and cluster are met, the clustering
is fair. This notion of fairness can also be defined by only
considering either the upper-bound (α) or lower-bound (β)
on the proportion of points. If α = β = 1/m then the
notion aims to represent each group with equal proportion
in the clustering output. Bounded representation has been
used in conjunction with a number of clustering objectives
as well [86], [105].

4) MAX FAIRNESS COST (MFC)
The MFC was defined by [32] for heuristic hierarchical
agglomerative clustering algorithms. Despite this, it is an
algorithm agnostic fairness notion as it works at only one
level of the tree hierarchy, making it apt for any clustering
algorithms with k cluster outputs. It is also a group-level
notion and requires an additional parameter named the ideal
proportion (Ib) defined for each protected group b ∈ [m].
Here, Ib is given by the user and provided at run-time, and can

vary to account for different application requirements. Then
if the proportion of group b ∈ [m] points in cluster a ∈ [k]
are given as Pa,b, the MFC is defined as:

max
a∈[k]

∑
b∈[m]

|Pa,b − Ib|

The MFC is essentially the maximum of the sum of all
deviations from the ideal proportion for each protected group
in a cluster. The lower the MFC, the better the fairness
achieved by the clustering. If the parameter Ib is set to 1/m
then the fairness notion aims to ensure that each protected
group is represented with the equal proportion in each cluster.

5) DISTRIBUTIONAL INDIVIDUAL FAIRNESS
This individual-level fairness notion was proposed by [89].
Here, a fairness similarity measure F ∈ R+ is assumed to be
known that operates on a pair of samples from the dataset X .
To ensure fairness, the statistical distance obtained using the
f -divergence [106]–[108] for the output distributions of each
pair of samples should be smaller than the distance obtained
using the F metric. Also, the fairness notion is algorithm
specific as it assumes cluster centers are available, limiting
applicability to center-based clustering. It also assumes prob-
abilistic clustering (a setting such as GaussianMixtureModel
based soft clustering [109]) for the problem definition. Their
work extends the notion of individual fairness proposed for
classification by [26].

Let U denote a k-sized cluster center set. Also let the
f -divergence between the distributions Vx ,Vy cast overU for
pair of samples x, y ∈ X ×X be denoted as Hf (Vx ||Vy). Then
the distributional individual fairness notion requires that the
following is met for all pairs of dataset samples x, y ∈ X×X :

Hf (Vx ||Vy) ≤ F(x, y)

Note here that for the f -divergence, many possible defini-
tions exist that can be used, such as the KL-divergence [110].

6) KLEINDESSNER et al. INDIVIDUAL FAIRNESS
This is another individual-level notion of fairness pro-
posed by [87]. Unlike the previous individual-level notion,
this works at the level of the clustering output C =

{C1,C2, . . . ,Ck} and hence, is algorithm agnostic. For each
sample x in the dataset X , let d be a well-defined clustering
distance metric and Ca be the cluster that x belongs to.
Then, the fairness notion of [87] can be defined as a set of
constraints for the sample x and all clusters b ∈ [k], b 6= a
as:

1
|Ca| − 1

∑
z∈Ca

d(x, z) ≤
1
|Cb|

∑
z∈Cb

d(x, z)

If all the above constraints are met for all the individual
samples in the dataset X , the clustering is deemed to be
individually fair.
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7) ENTROPY
Entropy is a fairness metric that was defined in [111], and
has only been exclusively used for fairness in the context
of deep clustering models. A distinction of deep clustering
with respect to general clustering methods is that ground
truth labels for each sample are known prior to training.
Also, similar to balance, the higher the entropy the more
fair the model. Let Na,b be the set containing the samples of
the dataset X that belong to both the cluster a ∈ [k] and the
protected group b. Further, let na be the number of samples
in cluster a. Then entropy is defined as follows:

−

∑
a∈[k]

|Na,b|
na

log
|Na,b|
na

IV. APPROACHES FOR FAIR CLUSTERING
In this section, we comprehensively discuss research to-date
on fair clustering, along two dimensions: 1) the clustering
objective the fairness intervention is for, and 2) what stage
of the learning pipeline the intervention falls into (refer to
Section II). In the first subsection that follows, we summarize
all fair clustering approaches by categorizing them based on
the clustering objective they employ. This includes center-
based clustering (such as k-means, k-center, k-median), hier-
archical clustering, spectral clustering, and deep clustering
models. Since there are certain approaches that are either
more general or do not belong to either of the aforementioned
clustering objectives, we also have a miscellaneous category.
We find that the most common clustering objective consid-
ered for fair clustering approaches is center-based clustering–
in particular, this is one possible direction where future work
can improve on (Section VI).

In the second subsection, we consider the categoriza-
tion and discussion of fair clustering approaches based
on what stage of the clustering pipeline the enforcement
is targeting. Initially in Section II we had provided the
distinctions between the pre-processing/in-processing/post-
processing methodologies for general ML models. We apply
this same terminology for the classification of fair clus-
tering approaches. It is important to note that for clus-
tering, the learning pipeline is a little different compared
to traditional ML models as the training and test datasets
are the same. Therefore, in the second subsection we first
describe the fairness intervention stages (pre-processing/in-
processing/post-processing) in the clustering context and
then discuss categorization.

A. CLUSTERING OBJECTIVE
1) CENTER-BASED CLUSTERING
We now discuss all research on making center-based cluster-
ing fair. Also note that in fair clustering literature (and in gen-
eral, for clustering), k-median(s) and k-medoids clustering
are often used interchangeably to describe the latter problem.
Technically, these clustering objectives are very different–
k-median(s) refers to minimizing the L1 norm and cluster
centers need not be exemplars (must be points in the original

dataset), whereas for k-medoids the goal is to minimize the
sum of pairwise dissimilarities defined using any distance
metric, and centers need to be exemplars. As in other related
clustering work, wewill refer to latter case as k-medians, with
the implicit assumption that cluster centers are exemplars.
In case we discuss any deviations from this objective, we shall
state it explicitly to avoid ambiguity.
Group-Level Fairness: Chierichetti et al. presented the

first work on group-level fair clustering, specifically for the
k-center and k-median clustering objectives while consid-
ering the case with only two protected groups [30]. They
introduced the fairness notion of balance, which we dis-
cussed previously. To balance output clusters, they proposed
the fairlet decomposition method. Fairlet decomposition is
a pre-processing approach that computes fair micro-clusters
where fairness is guaranteed. They then use the fairlet cen-
ters as a newly transformed dataset from the original. This
transformed fairlet-based dataset is then provided to vanilla
clustering algorithms, and hence, we obtain approximately
fair clustering outputs as a result of the fairlets themselves
being fair. The fairlet decomposition approach is also visu-
ally described in Fig. 5 to improve understanding. Note that
fairlet decomposition can generally be used with any fairness
notions but proposing efficacious approaches for computing
fairlets is not a trivial task in itself.

Subsequently, Backurs et al. [99] improved the computa-
tional time complexity of fairlet decomposition by proposing
a nearly-linear time scalable algorithm, but only for k-median
clustering. Rösner and Schmidt [113] extended the fairness
framework of [30] to allow for multiple protected groups and
obtained a 14-approximation fair algorithm for the k-center
objective.

Schmidt et al. [97] introduced coresets for fair k-means
clustering, which allowed for a more scalable approach than
fairlets, and also are more applicable when random-access to
the dataset might not be allowed (required for fairlet decom-
position). Coresets are essentially a summary of a given point
set, such that they effectively approximate the cost function
for any possible candidate solution and the fair coresets
introduced in [97] aim to do this while also enforcing fairness
for the case with two protected groups. Huang et al. [121]
extended fair coresets for k-median clustering and remove
the dependence of dimension for fair coreset generation in
the case of k-means. Further, their approach works for mul-
tiple disjoint protected groups. Bandyapadhyay et al. [122]
proposed the first Fixed-Parameter Tractable (FPT) time
constant factor approximation algorithms for k-median and
k-means while removing the dimension dependency for core-
set generation. We visually describe the fair coreset approach
in Fig. 5.

A number of papers expanded upon the original fairness
notion of balance [30] by introducing upper and/or lower
bounds to protected group membership in clusters, also pre-
viously referred to as the bounded representation notion.
Ahmadian et al. [86] used only an upper bound constraint for
protected group representation in clusters for fair k-center
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TABLE 1. Detailed descriptions of fairness notions and their classifications.

with multiple protected groups present. Bera et al. [85] and
Bercea et al. [98] provided approaches for more general clus-
tering objectives that used upper and lower bound constraints
on the proportion of protected group members in each clus-
ter. The algorithm from [85] allowed for groups to overlap
(for example, consider both race and gender) and they denote

1 as the number of protected groups samples can belong
to simultaneously. They proposed a linear program based
rounding approach that achieves a c + 2 approximation
if the original clustering objective has a c approximation
algorithm available, while incurring at most 41+ 3 additive
violations to the upper and lower bound fairness constraints.
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Specifically for k-center, [85] obtained a 5-approximation
when centers need not be exemplars, and a 4-approximation
when centers are exemplars. Harb and Shan [123] improved
upon these fair k-center results of [85] by developing a faster
5-approximation algorithm for the non-exemplar case, and a
better 3-approximation algorithm for the case with centers
as exemplars. Jia et al. [120] proposed a 3-approximation
algorithm for the k-center objective that allowed for multi-
ple groups or colors. Esmaeili et al. [118] proposed approx-
imation algorithms in the general setting where points are
allowed to have uncertain protected group membership (that
is, protected group memberships are provided as a distribu-
tion), and a sample in the dataset is assumed to only belong
to one protected group at a time.

Liu and Vicente [114] introduced a stochastic approach
that solves a bi-objective optimization problem and shows
the trade-off between the k-means clustering objective and
fairness. Their algorithm was only guaranteed to converge
for smoothed problems. Esmaeili et al [126] generalized
the clustering objective cost/fairness problem for k-center,
k-median, and k-means and introduced new group-level fair-
ness notions. They developed bi-criteria approximation algo-
rithms for each notion.

Kleindessner et al. [128] proposed an approach to com-
pute fair summaries for group-level fair clustering which uses
k-center prototypes to summarize each group in a dataset.
They provide a linear time approximation algorithm for
this problem. Chiplunkar et al. [129] proposed improved dis-
tributed algorithms for the aforementioned fair summaries
notion in the streaming setting. Jones et al. [130] proposed
an algorithm that runs in linear time and yet achieves a
3-approximation for the fair k-center summaries problem.

Ghadiri et al. [33] introduced the socially fair notionwhich
focuses on minimizing clustering cost across groups rather
than constraining the proportion of protected groups in
clusters. Concurrently to [33], Abbasi et al. [103] indepen-
dently introduced a similar notion of group representa-
tion. Makarychev and Vakilian [104] presented a gener-
alized bi-criteria approximation algorithm and generalized
the socially fair clustering problem framework. Goyal and
Jaiswal [124] developed an FPT time approximation algo-
rithm for the socially fair notion. Thejaswi et al. [125] intro-
duced a new notion of diversity-aware fairness, that requires
each group have some minimum representation in the form
of cluster centers, for the k-median objective.
Individual-Level Fairness: Chen et al. [31] introduced the

individual level fairness notion of proportionality for k-center
clustering that seeks to ensure points are treated equally,
an important concern especially for facility placement. They
showed that exact proportionally fair solutions might not
always exist and provide an algorithm that achieves in the
worst case a 1 +

√
2 proportionally fair clustering solu-

tion. They also developed an approach that is O(1) pro-
portionally fair and also a O(1) approximation for the
k-medians objective of the optimal proportional fair solution.
Micha and Shah [93] modified Chen’s approach, developed

a 2-approximation algorithm when the distance metric being
used is the L2 norm, and proved the 1+

√
2 factor was tight for

other commonly used distance metrics such as the L1 norm
and the L-infinity norm.

Jung et al. [88] introduced an individual level notion that
determined a fair radius for clusters, as defined previously
(Table 1), for center-based clustering objective. They devel-
oped an algorithm that achieved a 2-approximate fair k-center
clustering, meaning that every point p has a center within a
distance of 2r(p) where r(x) is defined as in Table 1. Note
from here on that we denote bi-criteria approximation results
for the fairness notion and clustering objective using the
(., .) notation. Mahabadi and Vakilian [34] confirmed Jung’s
results and generalized the problem, obtaining (O(1),O(1))
bi-criteria approximations for fair k-median and k-means
clustering and a (O(1),O(log n)) bi-criteria approximation
for k-center. Vakilian and Yalçıner [92] improved upon the
fair k-center case of [34] and improved the bi-criteria approx-
imation from (7,O(log n)) to (3,O(1)). Additionally, they
provided improved bi-criteria approximations (compared
to [34]) for the k-means and k-median objectives as well.
Chakrabarty and Negahbani [91] also provided improved
algorithms for individual fair clustering according to Jung
et al’s fair notion achieving an (8, 8) and (8, 4) bi-criteria
approximations via linear program rounding for k-medians
and k-means clustering respectively.

We also discuss some other work on center-based individ-
ually fair and group-level fair clustering that have recently
been studied. Kleindessner et al. [87] introduced another
individual fairness notion using a dissimilarity function
that requires points be closer to points of their cluster
than those of other clusters. Anderson et al. [89] developed
fair algorithms that ensure distributional individual fair-
ness so that similar individuals are clustered similarly.
Brubach et al. [94] introduce two new individual fairness
notions and present an algorithm for the k-means objective.
More recently, Chakrabarti et al. [90] proposed an individual
fairness notion that ensures points receive similar quality
of service and provided algorithms for the k-center objec-
tive. Abraham et al. [127] introduced a fair k-means cluster-
ing algorithm for a new group-level fairness notion that is
enforced at the in-processing stage of the clustering pipeline.

2) HIERARCHICAL CLUSTERING
Ahmadian et al. [105] and Chhabra and Mohapatra [32]
concurrently proposed approaches for fair hierarchical
clustering. However, both approaches have a number of dif-
ferent distinctions. Ahmadian et al. [105] proposed a fairlet
decomposition approach for only (upper-bounded) bounded
representation fairness, for a number of recently pro-
posed hierarchical clustering objectives such as Dasgupta’s
cost [39], value [45], and revenue [46]. Due to fair-
let decomposition their work constitutes a pre-processing
approach. Chhabra and Mohapatra [32] on the other hand
proposed an in-processing algorithm for heuristic greedy
hierarchical clustering algorithms which can accommodate
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any notion of fairness. Their work does not consider the newly
proposed hierarchical clustering objectives such as [39] but
instead focuses on traditional heuristic hierarchical agglom-
erative clustering used in practice. Quy et al. [117] utilized
fairlet decomposition for making capacitated (clusters have
some size constraints) clustering fair. They considered both
hierarchical agglomerative (heuristic and greedy, similar
to [32]) clustering and partition-based clustering algorithms
to improve on fairness. Furthermore, as the capacitated clus-
tering problem is relevant in an educational setting (clusters
of students need both fair representation and approximately
fixed sizes), they evaluate their approaches on data from
school-going students.

3) SPECTRAL CLUSTERING
Kleindessner et al. [100] added fairness constraints (balance
fairness notion) to normalized and unnormalized spectral
clustering. They project the graph Laplacian onto a fair sub-
space and then perform k-means clustering on this subspace.
They also gave analysis for their approach on a variant of the
stochastic block model. Anagnostopoulos et al. [131], [132]
extended the work of [100], to the densest subgraph problem.

4) DEEP CLUSTERING
The first work combining deep clustering with fairness was
proposed by Wang and Davidson [102]; they introduced
fairoids to represent each group and ensured centers are
equally spaced from the fairoid via a discriminative deep clus-
tering model. Fairoids allow for non-binary valued protected
groups. Li et al. [111] developed a scalable, deep clustering
model that used adversarial loss to constrain learning and
ensure fairness while maintaining cluster quality. They were
the first paper to use deep, fair clustering on visual datasets
for visual learning. Zhang and Davidson [101] generalized
the fairness constraints for deep clustering and developed a
model that allowed for multiple protected groups and flexible
constraints.

5) MISCELLANEOUS
Ziko et al. [115] developed a general variational bound-
optimization framework for fair clustering. They introduce a
fairness penalty term based on Kullback–Leibler (KL) diver-
gence. The fairness penalty is used to measure and manage
the trade-off between the clustering objective and fairness.
Furthermore, their approach is scalable and works for large
datasets.

For the graph-based correlation clustering objective,
Ahmadian et al. [119] utilized the fairlet decomposition
method. They achieve promising results for a number of
different fairness constraints and find that by defining the
fairlet decomposition similar to the k-median cost they obtain
good approximations for fair correlation clustering.

Chhabra et al. [116] introduced the pre-clustering
approach of adding antidote data points to the original dataset
to improve group-level fairness. Antidote data points are
dummy points that do not belong to a protected group, but

when vanilla clustering is undertaken on the new dataset,
the solution is more fair with respect to the original points.
Their approach is general and can accommodate any fairness
notions and clustering objectives. They also consider other
problem settings for this work, such as in the case where
clustering objectives and fairness notions are convex func-
tions. The antidote data approach for fair clustering is visually
described in Fig. 5.

While we restrict ourselves to the study of fairness in
clustering algorithms, there are other related fields where
fairness can be studied, such as link prediction in complex
networks [133]–[136]. While an in-depth discussion of such
approaches is outside the scope of this work, clustering is
inherently connected to many other fields, where similar
ideas of fairness can be applied.

B. PRE-PROCESSING, IN-PROCESSING, AND
POST-PROCESSING APPROACHES
As mentioned before in Section II, fair approaches can be
broadly classified depending on what stage of the learning
pipeline the fairness is enforced in. In particular, for clus-
tering, the same classification holds, albeit with some slight
differences.

For pre-processing (or pre-clustering) based fair
approaches, the fairness intervention occurs at the stage
before the learning model is trained. In clustering, this means
that the original dataset X is first pre-processed and then
transformed to some dataset X ′. When the vanilla clustering
algorithmA is invoked on this transformed dataset, the result-
ing clusters obtained Cfair are fair. A schematic diagram
explaining this process is shown in Fig. 6.

For in-processing (or in-clustering) based fair approaches,
the fairness intervention happens as a result of changing the
original learning model, to make it output only fair solutions.
This is where a bulk of fair clustering approaches lie. Here,
the clustering model/algorithm itself is modified from the
vanilla clustering algorithm A to a fair clustering algorithm
A′ to make it incorporate fairness constraints in the fair
solution Cfair. The schematic demonstrating this is shown as
Fig. 7.
Post-processing (or post-clustering) based fair approaches

enforce the fairness approach after the learning model has
computer initial unfair estimates. In clustering, this means
that the fairness intervention occurs post the vanilla clustering
process. The vanilla clustering algorithmA is run on the orig-
inal datasetX to obtain unfair cluster solutions C. The fairness
approach then operates on C to obtain fair clustering outputs
Cfair. A lot of research works also fall into this category. The
schematic explaining this is shown as Fig. 8.
We now discuss fair clustering research under this classi-

fication. Furthermore, Table 2 showcases this categorization
for most of the major fair clustering papers.

1) PRE-PROCESSING APPROACHES
The concept of fairlet decomposition [30] which was used in
the first work of fair clustering constitutes a pre-processing
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FIGURE 5. Pre-processing methods, including fairlet decomposition, fair coresets, and
antidote data fair clustering approaches (green and pink colors represent protected groups).

FIGURE 6. Diagram explaining pre-processing/pre-clustering fair
approaches.

FIGURE 7. Diagram explaining in-processing/in-clustering fair
approaches.

based approach. As discussed before, fairlet decomposi-
tion aims to find fairlets (or micro-clusters) within the data
that meet fairness requirements. Vanilla clustering is then
employed on this data leading to fair solutions. Many fair
clustering works that expand upon or utilize fairlets fall
into the pre-processing category: [99], [105], [113], [119].
Fair coresets are also fair representations of the dataset,
that summarize the data points to ensure fairness in a more
scalable manner. Introduced by [97], fair coresets were used
in [121] and [122]. The antidote data approach for fair
clustering [116] described before is also relevant here as
it is pre-processing and augmenting the original dataset.
Diagrams explaining these different pre-processing based
approaches in a high-level manner are shown as part of Fig. 5.

2) IN-PROCESSING APPROACHES
In-processing approaches to fair clustering involve altering
the clustering objective and algorithm itself. Often the fair
algorithm optimizes between the clustering cost and fairness

FIGURE 8. Diagram explaining post-processing/post-clustering fair
approaches.

TABLE 2. Categorization of fair clustering approaches.

trade-off. Papers such as [114], [127], and [115] augmented
the original algorithms with functions that measured and
controlled the trade-off between fairness and clustering per-
formance. In [100], the authors similarly adjust the spectral
clustering objective to solve a minimization problem that
incorporates fairness constraints. In [125], the authors devel-
oped a k-median algorithm specifically for diversity-aware
fairness. In papers, [101], [102], [111] the authors constrained
the deep clustering process itself, optimizing the trade-off
between cluster quality and fairness through joint optimiza-
tion, adversarial learning or other similar approaches.

The works by [31] and [93] also alter the clustering
algorithm objectives to find individual-level proportionally
fair solutions. Finally, the papers [88]–[91], and [94] also
redefine the clustering objectives to make them individu-
ally fair according to the fairness notions first proposed by
Jung et al. [88].
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3) POST-PROCESSING APPROACHES
Post-processing involves modifying the clustering outputs to
be fair. A vanilla clustering algorithm is first employed, and
either a fair problem is separately solved or the vanilla output
adjusted depending on the fairness notion. The clustering
algorithm itself does not jointly optimize for the clustering
cost and fairness objective, unlike methods for in-processing.
Examples of post-processing approaches include those used
for fair k-centers summaries– these post-process clustering
centers such that every group is represented through centers
equitably. This line of work was first introduced by [128]
and later extended by [129] and [130]. The authors in [113]
use an algorithm to maintaining fairness and privacy sub-
sequent to first finding a non-private solution using vanilla
clustering algorithms, also constituting a post-processing
approach. Similarly, [85], [86], [98], [123], [34], [92], [118],
[126], and [87] solve the vanilla clustering problem first and
then improve fairness by proposing algorithms that change
cluster assignments for points. Hence, these also constitute
post-processing based fair clustering approaches.

Another post-clustering based work was by [137]. Here,
the authors take as input the cluster output from a vanilla
clustering algorithm, and compute a clustering close to the
original, but one that meets fairness requirements. They for-
mulate the problem as an integer linear program, and also
provide theoretical results on hardness.

V. EVALUATING FAIR CLUSTERING
In this section, we discuss the aspects of fair clustering
research along two facets– the datasets that are generally used
for evaluation, as well as the motivations for some real-world
applications. The goal here is to allow researchers to select
suitable datasets for evaluation based on prior research, and
also provide themwith real-world use cases. These real-world
scenarios can then be used for motivating theoretical prob-
lems in fair clustering, or undertaking fair clustering research
with a more practical flavor.

A. DATASETS USED FOR EVALUATION
The approaches discussed in Section IV propose different
methods of creating fair clustering models using different
notions. The next phase is to evaluate the approach by apply-
ing it to actual data. Datasets used vary widely from paper
to paper depending on the notion and overall goal, but some
datasets are used more frequently than others and can be used
to compare between approaches.

To serve as a guide for researchers new to the field,
the datasets used in over 40 papers on fair clustering were col-
lected in Table 3 (classical clustering approaches) and Table 4
(deep clustering models). The most common datasets used
for traditional fair clustering are listed at the top of Table 3:
adult [138], bank [139], creditcard [82], diabetes [140], and
census [141], all of which are large datasets from the UCI
ML repository [167]. Table 3 includes the name and label
of each dataset, a short description, and the source paper.

Most other datasets can also be found on the UCI repository.
Further, the possible protected groups (such as ethnicity),
that have been used in the surveyed papers are listed as well
along with the dataset size. We term a dataset with over
10,000 instances as large. Note that some papers opt to use
subsets of the datasets since their algorithms do not scale well
or the running time is too long such as [30], [85], [113], [118].
For completeness, we also list all papers surveyed that use
a certain dataset in the last column of the aforementioned
tables.

Datasets are sometimes chosen specifically for the
approach and fairness notion being proposed. For exam-
ple, [103] uses North Carolina Voter information when
proposing their group representation notion for facility loca-
tion. Other datasets such as bank [139] and creditcard [82],
with common protected groups being marital status and gen-
der, also have fairly clear connections to the motivations
behind fair clustering. Other datasets, such as iris [145], are
less directly connected but can still serve as toy datasets
for experimentation. We also find that the most common
protected groups are gender and sex, and race. Datasets listed
without specific protected groups are used in papers enforc-
ing individual-Level fairness notions and therefore did not
require a specific protected group.

Visual datasets are often used for deep clustering; these
are listed in Table 4. Deep clustering, as mentioned in
Section IV, differ from more traditional approaches and can
learn more powerful representations. In Table 4, the datasets
are described and the protected group is listed.

B. REAL-WORLD APPLICATIONS
Machine learning models have been used to assist in a vast
majority of decision-making and risk assessment processes,
from college admissions to online recommendation systems.
For further information on the topic, Makhlouf et al. [80]
in their paper discuss general applications of ML in
decision-making processes and some existing programs
where fairness should be considered. Suresh andGuttag [168]
additionally show how ML models can have unintentional,
damaging consequences if bias is not considered throughout
theML pipeline. Thus, in this section, real-world applications
for fair clustering ML models are used to motivate further
research in the field.

1) BANK LOAN DISBURSEMENT
We described a similar scenario previously in Section III for
group-level notions. Clustering based models can be used
to determine individuals who should receive a loan based
on how likely they are to default on it. Many factors can
play a role, and are often considered before disbursement,
such as an applicant’s education history, past payment his-
tory, past billing statements, amount of the bill paid, and
age. Members of certain minority protected groups, such as
women or POC, might have lower incomes due to systemic
issues such as the wage gap. Furthermore, married persons
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TABLE 3. Datasets used to evaluate classical fair clustering algorithms.
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TABLE 4. Datasets used to evaluate deep fair clustering models.

might have better credit than single persons. Vanilla clus-
tering algorithms being used for shortlisting candidates for
disbursement in an unsupervised manner that do not correct
for the different sorts of bias present in data will likely cluster
single people, women, and POC as higher risk and as more
likely to default on their loan. Such predictions might result
in fewer loans, or loans with higher interest rates, being
given to protected groups, further promoting the systemic
issues at hand. A well designed, fair clustering algorithm
could correct for the disparate impact by requiring balance or
a bounded representation, that more or less fix the proportion
of protected groups in each cluster.

2) JOB SHORTLISTING
Many ML based approaches exist that parse through job can-
didates in order to shortlist those who should be interviewed
or move onto the next application step [9]. Automating
this step can reduce errors, human bias, time spent pars-
ing applications, and allow for easy comparison between
candidates [13]. Clustering algorithms can separate between
accepted and rejected candidates for shortlisting based on
their skill sets and other attributes, and how well they match
the job requirements. Common candidate attributes include
education, major, experience, skills, current location, cur-
rent employment status, age, gender, etc [169]. Clustering
algorithms that do not account for bias might reject POC
or women and accept less qualified white men [80]. A fair
clustering algorithm that requires for example, balance, for
the sensitive group gender would fix the proportion of women
in each cluster, assigning top qualified women from the
rejected cluster to the accepted one to account for the bias.
The company benefits by seeing more qualified individuals,
and the applicants are not discriminated against by being
rejected based on their inherent attributes.

3) COLLEGE ADMISSIONS
Clustering based ML models can be used to shortlist
candidates for admission, remove definite rejects for college
applications, or select those most likely to attend. Attributes
considered might include GPA, leadership roles, parents’
education levels, and general student information. Algo-
rithms with unchecked bias might reject candidates based

on factors that are unrelated to the candidate’s ability, such
as their street address [80], which can correlate to other
attributes such as their socioeconomic background or race.
Fair clustering algorithms that ensure individual-level fair-
ness (Section III) could prevent individuals with approxi-
mately similar grades or leadership roles from being clustered
differently based on unrelated attributes such as ethnicity.

4) FACILITY LOCATION
MLmodels can assist in facility location, for example in help-
ing determine voting/polling booths, or hospital locations.
As previously mentioned in Section III, regular clustering
models that only consider the number of homes in an area
might unfairly distribute facilities among suburban, urban,
and rural areas. Fair clustering models should take into
account the conditions of an area by considering other con-
straints, such as proportionality. Depending on the facility
purpose, proportionality could ensure facilities are equally
serviced [31]. Another notion, group representation, could
ensure cluster centers/ facilities are fairly placed such that the
centers are representative of the clusters, or each area gets its
own center [103]. This could play a role in ensuring polling
centers are serviced similarly and are a reasonable distance
from a majority of sample locations.

5) PRISONER RECIDIVISM
ML models have been used to predict the risk/likelihood of
ex-convicts re-offending to offset human bias on factors such
as race [170]. Prisoner recidivism can be interpreted as a
probability and could be determined by a soft clustering algo-
rithm, in which a point can be assigned a certain proportion
of each cluster– with clusters signifying either being at high
risk of re-offending, or low risk. A number of factors can
assist in predicting recidivism, including age and number of
prior convictions [170]. However, as has been found with
the COMPAS tool [18], since data used to train such algo-
rithmsmight be systemically biased, the learningmodel could
amplify bias against POC based solely on their race [79].
In such a case, a well-designed fair clustering algorithm that
ensures individual fairness– that similar individuals (in terms
of crimes committed and other attributes) are clustered sim-
ilarly regardless of sex or race [89]– would prevent minority
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protected groups members from being assigned dispropor-
tionately higher risk rates compared to non-group members
with similar crime statistics.

6) RECOMMENDATION SYSTEMS
Clustering based recommendation systems have been used
for many purposes, from movie recommendation [171] to
distance learning course recommendations [172]. As clus-
tering algorithms can be biased due to the data, these rec-
ommendation systems can also be biased. This could mean,
for instance, giving skewed recommendations to men over
women [80]. As a result, recommendation systems should
be personalized for individuals, and should not be explicitly
biased towards gender or ethnicity. A clustering algorithm
that ensures some level of individual-level fairness could
prevent certain groups from automatically receiving certain
recommendations regardless of their other attributes.

7) COMMITTEE SELECTION
Afinal example, also presented in [125], is selecting commit-
tees that represent each group in a population. Committees
are built within various communities for political, educa-
tional, fundraising, among other purposes. The goal might
be to have a committee with at least one representative of
each group, or have a diverse committee where every group
is well represented by multiple members. A fair clustering
algorithm could ensure protected groups are well represented,
irrespective of individuals’ ethnicity or political bias, using
notions such as diversity-aware fairness [125], group repre-
sentation [103], or fair summaries [128].

VI. FUTURE RESEARCH DIRECTIONS AND OPEN
CHALLENGES
A. CONSIDERING ALTERNATIVE CLUSTERING OBJECTIVES
As we have seen throughout the article, and especially
in Section IV, most research on fair clustering consid-
ers center-based clustering algorithms (such as k-center,
k-medians, etc), and a few consider hierarchical clustering
objectives and spectral clustering. However, there are a num-
ber of other clustering algorithms and objectives that have
not been considered from a fairness perspective. We pro-
vide directions for research in this regard with respect to
density-based clustering approaches and soft clusteringmeth-
ods. Furthermore, as in-clustering approaches are more pop-
ular, we consider those for this first approach.

1) DENSITY-BASED CLUSTERING
Density-based clustering algorithms use the concept of den-
sity or how close points are to each other in space to assign
points to clusters and label points in low-density regions
as noisy points or outliers. There are a number of different
approaches that seek to perform density-based clustering,
such as DBSCAN [47] and OPTICS [48]. For this task, as a
first step, popular algorithms such as DBSCAN [47] and
OPTICS clustering [48] could be considered. Further on,
research frameworks can be extended to other density-based

clustering approaches such as PreDeCon [173] and SUB-
CLU [174] since these share similarities with the DBSCAN
approach.

In general, one can consider the following in-clustering
approach to improving fairness for these clustering algo-
rithms. First, identify a clustering objective based on the
characteristics of the algorithm and application scenario. This
objective allows one to eventually provide theoretical guaran-
tees of fairness. Next, decide on how the fairness constraint
is enforced, depending on the suitability to an application
scenario. For example, if balance is being considered, one
can consider lower bounding or upper bounding balance; if a
proportion of points is being considered, bounded representa-
tion can be considered. Then, approximation algorithms can
be proposed which approximate the objective. The approx-
imation ratio obtained is the cost that the fair approximate
algorithm achieves on the objective compared to the optimal
value of the objective. It can also be gauged as to how
much distortion is present in the fair assignment of points as
compared to the original objective. Lastly, evaluation of the
proposed approach using real-world datasets (as discussed in
Section V) can be undertaken and fairness improvements can
be analyzed.

There are other prospective research challenges associ-
ated with this problem. As most research so far has looked
at center-based clustering, it is probable that fairness def-
initions are also designed accordingly. Thus, depending
on the clustering algorithm being analyzed, alternate fair-
ness notions can be developed and studied. For example,
DBSCAN labels certain points as outliers (called noisy
points) while clustering, and this might require differing
notions of fairness as certain points are not being represented
by the clustering algorithm at all now. Another prospective
research direction can be to study multiple assignments to
protected groups for data points. As a first step, the 2 groups
case can be studied as in the seminal work of [30]. Future
work can then include multiple groups, with points being
assigned disjointly to each protected group. Subsequently,
settings where points can be assigned to multiple protected
groups at the same time can be analyzed. Finally, improve-
ments can also be made in terms of running-times– while
naive first approaches to providing fairness for the aforemen-
tioned clustering algorithms can have longer running times,
for any practical implementation, it would be required to
improve the asymptotic time complexity of their fair variants.

2) SOFT CLUSTERING
As mentioned before, much discussion and existing work
have focused on hard-clustering algorithms where a data
point belongs to a cluster in a binary fashion. That is, it either
belongs to a cluster or it does not. However, in certain appli-
cation scenarios, soft clustering is more suitable. Gaussian-
mixture models [109] have been widely used in such cases,
and thus could be the preliminary focus of this research direc-
tion. To estimate clustering results in a Gaussian-mixture
model, an expectation–maximization (EM) algorithm [175]
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is often used. EM is an iterative method to find (local) max-
imum likelihood or maximum a posteriori (MAP) estimates
of parameters in statistical models, where the model depends
on unobserved latent variables. Therefore, a new research
direction involves studying the fairness of such algorithms.
A first approach and initial objectives could be similar to that
discussed in the previous subsection on density-based clus-
tering. One key issue is to redefine fairness in the presence of
soft-clustering to reflect its probabilistic nature.

B. IMPROVED CLUSTERING PERFORMANCE ANALYSIS
Fair clustering approaches aim to improve fairness for clus-
tering objectives by changing cluster assignments for samples
in the dataset. It is well known that clustering performance
is degraded as a result of improving fairness [118], [176],
[177], as changing point labels to improve fairness can be
contradictory with the original cluster assignments, leading
to worse clustering performance. While this trade-off is well
acknowledged, there is currently no standardized approach to
measuring clustering performance.

Most research works measure the drop in the clustering
objective over the vanilla (original/unfair) clustering objec-
tive [30], [85], [105]. However, measuring performance in
this way might not be suitable in some case scenarios. Con-
sider the following examples:

• When AlgorithmAgnostic Fairness Notions Are Used for
Different Clustering Objectives: If algorithm agnostic
notions are used, but the clustering objectives are dif-
ferent, directly observing the values of the clustering
objective after fairness enforcement would not lead to
a sound comparison. For example, comparing a fair
k-center cost with a fair k-means cost would not make
sense. This scenario can arise when more general fair
clustering approaches are being employed as in [116].

• When Clustering Objectives Are Not Well-Defined: This
can be understood through the context of hierarchical
clustering. Although recently clustering objectives for
hierarchical clustering have been proposed, traditionally
hierarchical clustering has been a heuristic agglomera-
tive/divisive procedure and does not have an analytical
objective to optimize. Thus, research aimed at making
traditional hierarchical clustering fair [32] would not
have a clustering objective which can measure the qual-
ity of the fair solution, in terms of clustering perfor-
mance.

Alternatively, traditional clustering performance indicators
could be used to measure clustering quality after fairness
enforcement. These include the widely utilized Silhouette
score [178], Calinski-Harabasz index [179], or the Davies-
Bouldin index [180]. These have also been employed as a
measure of clustering performance after fairness interven-
tion in some fair clustering works [32], [116], [127]. The
Silhouette score is especially appealing since it is bounded
and always outputs a value between −1 and 1, making it
easy to interpret. However, these metrics also have certain

drawbacks– they work well only in the case with convex
clusters, and might not be good indicators of performance in
other case scenarios. Therefore, a future research direction for
fair clustering is to investigate and propose new metrics for
clustering performance specifically in the context of fairness.
This would also connect the field of fair clustering with the
long-standing sub-field of research on measuring clustering
performance.

C. ADVERSARIAL ATTACKS AGAINST FAIRNESS
This direction for future work primarily deals with adversar-
ial attacks on clustering algorithms that aim to degrade the
fairness of a given clustering. As more and more research
attempts to make clustering fair, the converse of problem
in clustering also holds true. Malicious entities can seek to
disrupt fairness for their personal gains and agendas. As a
starting point for investigating this, it would be useful to
leverage work on data poisoning for clustering in a black-box
setting [181], [182]. Without changing the attack objec-
tive, the attack first proposed in [32] is especially powerful
because it can be carried out without knowing the original
clustering algorithm.

We can delineate a first approach for degrading fairness
using the attack algorithm of [181] and for the fairness
notion of bounded representation [86]. Let the clustering
algorithm be k-means where k = 2. Here, for ensuring
fairness each protected group’s members in a cluster need to
be within some minimum and maximum pre-specified pro-
portion. In [181] details adversarial attacks where the target
of the adversary is to lead to spill-over of as many points
from one cluster to another. Thus, in the 2-way clustering
setting, since this attack algorithm can change the propor-
tion of points that belong to each cluster, we can effectively
skew the chosen fairness metric for the outputted clustering.
We defer interested readers to [181] for more details on the
attack algorithm and threat model.

Subsequent to this, there are many possible directions
along which fairness degrading adversarial attacks can be
extended:

• Black-Box Attacks: Black-box attacks on clustering
algorithms that disrupt fairness of the obtained clus-
tering can be investigated. Since these are black-box
attacks, the attack is powerful as it works irrespective of
the choice of clustering algorithm used by the defender.

• White-Box Attacks: White-box attacks specific to the
clustering algorithm (or its fair variant) chosen by the
defender can also be investigated.

• Other Attack Modalities and Threat Models: Attacks
when other attack modalities are considered, such as
imperfect knowledge of the dataset, grey-box attacks,
different fairness definitions that can be disrupted, and
alternate/enhanced attack objectives, as well as costs to
the adversary can also be analyzed.

• Transferability and Other Fairness Notions: Like in
supervised learning [183], analysis can be undertaken
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to observe if generated adversarial samples are transfer-
able across algorithms, fairness definitions, and attack
settings.

D. MORE APPROACHES FOR DEEP CLUSTERING
Deep clustering is the combination of deep learning
paradigms to the classical clustering approaches in unsuper-
vised learning. The approaches used are different from tradi-
tional clustering, and usually require the existence of labels in
the testing phase to evaluate the deep learning models using
metrics such as the Normalized Mutual Information (NMI)
score [184]. In case labels are available for the ground-truth
clusters, deep clustering has been shown to achieve state-of-
the-art performance when compared with traditional cluster-
ing approaches such as k-means [185]. Thus, it is important to
ensure fairness for these models as well, similar to traditional
clustering approaches.

However, as covered in Section IV, not much research has
been undertaken in this regard. To the best of our knowl-
edge, there are only three research works covering deep fair
clustering: [101], [102], [111]. Thus, an important direction
for future work is to study deep clustering from a fair-
ness perspective. Many aspects of future work exist, similar
to how fairness has been studied for traditional clustering
approaches.

E. ASSESSING PERCEIVED FAIRNESS
For fairness improvements in clustering with significant
social impact, the evaluation stage needs to be improved
to account for perceived fairness by protected groups and
individuals. Clearly, while one may develop fair algorithms
for ML based on relevant fairness costs and definitions,
a fair algorithm is only beneficial if it impacts the affected
community in a positive social sense. To this end, there
is a lot of potential for significant research work to gauge
how fair proposed algorithms are in terms of public percep-
tion. Such experiments can be carried out with special focus
groups where individuals and groups (based on the protected
attributes of the application at hand) directly impacted by
applications where clustering algorithms are used can provide
guidelines for improvement. Based on this feedback, better
fairness definitions can also be proposed that are socially and
practically relevant. Prior research in clustering fairness has
not considered evaluation of this form, and therefore, using
minority groups’ feedback as an evaluation metric will lead
to fairer systems along with considerable research novelty.

Another related dimension to actual perceived fairness in
clustering are the datasets being used. Along with identify-
ing application domains where fair clustering needs to be
implemented, it is also important to obtain real-world datasets
which might lead to eventual unfairness in clustering. This
is important for a number of reasons: 1) obtaining empirical
results for proposed algorithms on actual real-world datasets
can shed light on how these algorithms perform in actual
application scenarios and not on synthetic ones, and 2) doing
so opens up an opportunity to understand how biases might

creep in the datasets in the first place, which could lead to
the development of more fair algorithms, and better fair-
ness definitions. To do this, datasets can be obtained from
actual recruiting agencies, or from universities’ admission
processes, and can then be used to gauge if proposed fair
algorithms provide fairer results. The analytical models and
algorithms can then be tuned so that they are being leveraged
to induce more fairness into such real-world applications
(such as admission/selection processes).

As mentioned before, perception of algorithmic fairness
is an important metric for evaluation. Thus, an evaluation
plan and methodology for fair clustering research should
involve conducting regular meetings and focus groups. Here,
proposed fair algorithms will be utilized in real-time, and
minority and affected political groups will give their observa-
tions and feedback regarding its fairness. For example, users
belonging to certain protected groups can be shown how the
vanilla clustering algorithm performs, and then how the fair
variant performs. While the fair algorithm might be better,
it might still not be at an acceptable standard in terms of actual
protected group members’ expectations. Such constructive
feedback could aid in building actual tools and algorithms
that are useful to the community as a whole, and provide
some real social significance. There is also a lot of scope in
borrowing from similar efforts that assess perceived fairness
in algorithmic decision-making systems such as [186].

F. HANDLING HIGH-DIMENSIONAL DATASETS VIA
SCALABLE FAIR CLUSTERING
In general, similar to other data analysis techniques,
clustering algorithms also suffer from the curse of
dimensionality [187], and tend to perform poorly on
high-dimensional datasets [188].Moreover, the first approach
for fair clustering proposed by Chierichetti et al. [30] was
also not scalable, and could only be applied to small sized
datasets. This was due to the first step involving fairlet
decomposition, which has a super-quadratic running time.

While research extending this work has attempted to make
fair clustering scalable, there are still many shortcomings. For
example, Backurs et al [99] proposed a scalable algorithm
for fairlet decomposition which runs in (almost) linear time,
however, this approach is only applicable for the case with
2 protected groups. This trend is also prevalent in other fair
clustering approaches proposed for other clustering algo-
rithms. For example, the fair spectral clustering algorithms
proposed by [100] do not scale well with dataset size and
dimension, and even for the more general antidote data fair
clustering approach [116] the authors noted that a major
limitation of their work is the running time of their algorithms
when applied to high-dimensional/large-scale data.

Thus, a possible future direction for research in fair clus-
tering can aim to make the proposed fair algorithms scalable,
and allow them to handle high-dimensional data. Clustering
algorithms capable of handling high-dimensional data have
been extensively studied in the literature [188], [189], and
future research can aim to apply these techniques to the field
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of fair clustering. Researchers can also aim to augment exist-
ing fair clustering approaches so as to make them scalable.

G. RELATING FAIR CLUSTERING TO CONSTRAINED
CLUSTERING
The problem of constrained clustering tackles the case when
additional information is known about the clustering prob-
lem, and can be used to improve the discovery of clus-
ters [190]. This scenario arises in real-world problems where
domain specialists can provide additional side information to
aid the clustering process. In the simplest case, this can then
be translated into a traditional clustering problem where we
wish to impose some instance-level constraints on the original
clustering problem [191].While many different forms of con-
straints can be formulated for different clustering algorithms,
we consider must-link and cannot-link constraints to moti-
vate the connections between fair clustering and constrained
clustering.

Consider individual-level fairness and assume there exists
an unbiased domain specialist who knows that certain sam-
ples in the dataset need to belong to the same clusters (for
example, a recruiter who interviewed candidates and found
them to be equally suitable for a position, irrespective of
their protected group attributes, such as gender or ethnicity).
Conversely, the domain specialist can also provide side infor-
mation indicating that two samples should not belong to the
same cluster (considering the previous example, the recruiter
knows that one candidate performed well in the interviews
and the other did not, irrespective of their protected group
memberships). Such side information about the data samples
can be trivially encoded as must-link and cannot-link pair-
wise constraints between data samples. Then, if candidates
are being shortlisted using a clustering algorithm such as
k-means (similar to the job shortlisting examples considered
in Section III and Section V), these must-link and cannot-link
constraints can be provided as input (along with the original
dataset) to a constrained k-means algorithm such as PC-
KMeans [192] or COP-KMEANS [52] to enforce individual-
level fairness.

In a similar fashion, even other fairness constraints (such
as those enforcing group-level fairness) can be encoded with
the assistance of a domain specialist. These can then be
used to meet the fairness criteria using existing constrained
clustering algorithms. As a future research direction, we then
aim to motivate studying fair clustering from the perspective
of constrained clustering, which has been extensively studied
in previous work. Another important research contribution
could be to provide theoretical insights into when fair clus-
tering problems can be translated into constrained clustering
problems, and the different types of constraints and fairness
notions that can be used to do so.

VII. CONCLUSION
In this work, we provided the first survey on fair clustering.
Initially, we discuss the relevant details regarding clustering
and fairness in machine learning (Section II). Then we cat-

egorize different fairness notions used in making clustering
fair (Section III) and propose intuitive classification method-
ologies for the same. We also organize current fair clustering
literature into many sub-categories (Section IV) and provide
a comprehensive overview of the field as a result. We also
detail many new insights and describe possible directions for
future work (Section VI). Our goal through this survey article
is to add to the existing body of work on fair clustering by pro-
viding a concentrated introduction to the field, which serves
useful for both researchers and industry practitioners alike.
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