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1 Introduction

Clustering algorithms are widely employed in machine learning applications, either as a precursor to
supervised learning to generate pseudo-labels for training [1, 2] or to group similar samples together
in the absence of labeled data [3–5]. A large body of work on clustering approaches aims to add
constraints to change the clustering output to accommodate these constraints while minimizing
the clustering loss [6–8]. A large majority of these "constrained clustering" algorithms constitute
in-processing approaches [9–11], where the algorithm itself has to be changed according to the
desired constraints to update the clustering output. In particular, constraints can vary widely, and
there are many different clustering algorithms. Thus, there are a combinatorial number of "possible"
constrained clustering algorithms, and algorithm designers would have to come up with analysis and
theoretical guarantees for each of these individually, making it a challenging problem.

Instead, we propose the use of patches, which are essentially a small number of "new" data samples
that are added to the original dataset to ensure that the clustering output achieves the desired
constraints. Our work is in part inspired by the use of antidote data [12, 13], where additional data
points are used to improve fairness metrics for the machine learning models. However, in our work,
we aim to generalize this to any metric defined over the clustering output, through the use of data
patches.

In this paper, we consider performance metrics defined over the clustering output, and utilize zeroth
order approaches to optimize the data patch problem, to improve upon these metrics. We consider
commonly used clustering metrics in the literature such as Normalized Mutual Information (NMI)
[14], Adjusted Rand Index (ARI) [15], and Silhouette Score [16]. The NMI and ARI metrics seek
to measure how densely and accurately the cluster outputs are with respect to some known ground
truth. The Silhouette Score on the other hand, is truly unsupervised, and measures the quality of the
clustering output under the assumption that ground truth labels are not available.

The rest of the paper is structured as follows: Section 2 discusses related work, Section 3 introduces
the problem statement and the proposed approach for solving the data patch problem, Section 4
showcases preliminary experiments and results on real data, and Section 5 concludes the paper.

2 Related Work

No prior work inherently studies "updatable" clustering but the closest work to ours uses antidote
data to improve the fairness of clustering models [12] or recommendation systems [13] using newly
introduced data points. However, while the motivation is similar, the algorithms in these papers are
specifically designed to improve upon fairness/polarization/bias metrics, and do not work for any
general metric that operates on the clustering output. Through this work, our main goal is to show
that simple algorithmic solutions exist to the data patches problem, and show that these can be a
viable solution to updatable clustering.
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3 Problem Statement

Let the original dataset be denoted as D, and the data patches are denoted as P . Now, let a clustering
algorithm be defined as A, which operates on some data samples D, and outputs a clustering output
O consisting of labels for each sample in D. That is, A(D) = O. Now, let θ be a clustering metric
defined on the clustering output obtained as θ(O) which outputs a scalar value, where a higher
value indicates a more viable solution. We would like to maximize θ for our original dataset D,
by combining the data patches P (i.e., D ∪ P ) with our original dataset, and obtain an extended
clustering label set O′ (i.e., A(D ∪ P ) = O′). Basically, we seek to improve the performance with
respect to the original dataset D by maximizing θ(Ô′), where Ô′ are the first |O| labels of O′.

The optimization problem can then be written as follows:

max
P

θ(Ô′)

s.t. Ô′ = O′
:|O|

O′ = A(D ∪ P )

(P.OPT)

For experiments in the paper, we employ three different clustering performance metrics θ that operate
on the clustering output: NMI, ARI, and Silhouette Score (s). These definitions indicate how "good"
the outputted clustering is and hence, we aim to improve the original clustering on the dataset D
(according to these metrics) by injecting the patches P in the dataset. The analytical definitions for
these performance metrics are given below:

θNMI =

∑
i,j nij log

n.nij

ni+.n+j√
(
∑

i ni+log
ni+

n )(
∑

j n+j log
n+j

n )
(NMI)

Here, nij , ni+ and nq+j represent the co-occurrence number and cluster size of i−th and j−th
clusters in the obtained partition and ground truth, respectively, and n is the total data instance
number.

θARI =
ϕ− E[ϕ]

max {ϕ− E[ϕ]}
(ARI)

Here, ϕ is the Rand Index defined as ϕ = a+b
Cn

2
where Cn

2 denotes the total possible pairs in the dataset,
a denotes the number of pairs of samples in both the predicted clusters and the ground truth clusters,
and b denotes the pairs of samples that are in different sets of predicted clusters and in different sets
of the ground truth clusters.

θs =
b− a

max(a, b)
(Silhouette Score)

Here, a is the mean distance between a sample and all other points in the same class and b is The
mean distance between a sample and all other points in the next nearest cluster.

4 Results

We solve the aforementioned optimization problem P.OPT by using zeroth order optimizers (namely,
[17]), as in the general case, we cannot obtain first-order (gradient) information from the clustering
output. In our experiments we consider the UCI DIGITS dataset [18] and MNIST [19] dataset, which
we subsample to allow for faster clustering performance.

We first show some of our data patches visually in comparison to the original input datasets in Figure
1. While clearly out of the input distribution, these samples are able to augment the performance of
the dataset on the original dataset as we will show below. We utilize the k-means [20] clustering
algorithm in all our experiments.
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Figure 1: Patches generated by our approach.

0 1 2 3 4 5 6 7 8 9 10
# Patches

0.3

0.4

0.5

0.6

0.7

AR
I (

k 
= 

10
)

DIGITS
MNIST

(a) ARI

0 1 2 3 4 5 6 7 8 9 10
# Patches

0.55

0.60

0.65

0.70

0.75

0.80

0.85

NM
I (

k 
= 

10
)

DIGITS
MNIST

(b) NMI

0 1 2 3 4 5 6 7 8 9 10
# Patches

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Si
lh

ou
et

te
 S

co
re

 (k
 =

 1
0)

DIGITS
MNIST

(c) Silhouette Score

Figure 2: Plots showcasing the effect of increasing the number of patches on the clustering perfor-
mance.

DIGITS MNIST
NMI 12 15.13
ARI 23.62 44.98

Table 1: Maximum percentage increase in
performance as a result of adding patches.

We observe that even by adding a single patch the per-
formance (ARI/NMI/Silhoutte Score) of the original
clustering algorithm can be significantly improved.
In general, we observe performance improvements
up-to 45% (ARI, Table 1) just by adding < 10% the
number of samples in the dataset as patches.

The general trend as observed in Figure 2 is that by
adding more patches, we can increase performance much more. However, note that it is generally
better to add only a few additional patches to the dataset, as this increases both the computational
requirements of the clustering task, as well as the compute required to obtain the patch samples via
the zeroth order optimizer.

We also use Principal Component Analysis [21] to visualize the first 2 principal components of both
the patches and the original dataset. These are shown in Figure 3. Quite evidently, the patch samples
are significantly different from the input data distribution, as also visually observed in the images
shown in Figure 1.

5 Conclusion

In this paper, we propose a simple approach to updatable constrained clustering by using data
augmentation in the form of patches. We utilize zeroth order optimizers, to solve our formulated
data patch problem and generate patches to improve the performance of the output clustering. In
particular, we observe that adding even a single patch to the dataset can lead to significant performance
improvements, paving the way for future work that improves upon the 1) zeroth order optimization
algorithms, 2) applies patches to other non-trivial clustering metrics, and 3) provides theoretical
guarantees for patch generation.
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Figure 3: PCA components of the patches and the original dataset.
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