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Abstract—Internet of Things (IoT) has become the most
promising technology for service automation, monitoring, and
interconnection, etc. However, the security and privacy issues
caused by IoT arouse concerns. Recent research focuses on
addressing security issues by looking inside platform and apps.
In this work, we creatively change the angle to consider security
problems from a wireless context perspective. We propose a
novel framework called IOTGAZE , which can discover potential
anomalies and vulnerabilities in the IoT system via wireless traffic
analysis. By sniffing the encrypted wireless traffic, IOTGAZE
can automatically identify the sequential interaction of events
between apps and devices. We discover the temporal event de-
pendencies and generate the Wireless Context for the IoT system.
Meanwhile, we extract the IoT Context, which reflects user’s
expectation, from IoT apps’ descriptions and user interfaces. If
the wireless context does not match the expected IoT context,
IOTGAZE reports an anomaly. Furthermore, IOTGAZE can
discover the vulnerabilities caused by the inter-app interaction
via hidden channels, such as temperature and illuminance. We
provide a proof-of-concept implementation and evaluation of our
framework on the Samsung SmartThings platform. The eval-
uation shows that IOTGAZE can effectively discover anomalies
and vulnerabilities, thereby greatly enhancing the security of IoT
systems.

Index Terms—Internet of Things, Anomaly Detection, IoT
Security, Natural Language Processing, Wireless Context.

I. INTRODUCTION

The rapid development of the Internet of Things (IoT) has
an increasingly bigger impact on how we live and work. IoT
technology enables interconnection, service automation, and
other convenience in a variety of application scenarios, such
as smart home, smart factory, and smart city, etc. By 2022, the
number of connected IoT devices will reach to 29 billion [1].
The market value of IoT will reach to $1.2 trillion in 2022
with a compound annual growth rate of 13.6% starting from
2017 according to the IDC prediction [2]. To increase their
market share, different companies develop their IoT platforms
for third-party developers to build apps to realize service
provision automation. The popular IoT program platforms
include Samsung’s SmartThings [3], Apples’ HomeKit [4] and
Google Home [5].

Despite the exploding devices and fast growth of platforms
of IoT, the security and privacy solution is not keeping the
pace. Emerging vulnerabilities and attacks in IoT have brought
tremendous loss. Within 20 hours, 65,000 IoT devices were
rapidly infected and utilized to launch Mira attacks leading
to internet outage [6]. By exploiting a major bug in the

implementation of the ZigBee light link protocol, the attacker
can use one single malicious bulb to turn off all the city lights
[7]. Most critical security and privacy threats come from the
IoT platforms and their affiliated apps. For instance, despite
the Samsung SmartThings platform has a capability separation
model, the apps can still request the capabilities that they
do not need. The platform lacks effective means to audit the
requests. The authors [8] found that 55% of SmartApp did
not use all the rights to device operations that their requested
capabilities implied, and 42% of SmartApps were granted
capabilities that were not explicitly requested or used. Once
gaining access to the capabilities, the malicious apps may
not follow the user expectation and their app descriptions,
resulting in serious security issues.

To relieve the security and privacy threats, the researchers
propose solutions from different perspectives. By embedding
extra code, FlowFence [9] and Soteria [10] can monitor the
data flows and related control flows to prevent all the implicit
flows from IoT apps via static program analysis. ContextIoT
[11] uses the runtime logging to extract the essential context
for building a context-based permission system. SmarthAuth
[12] collects the security-relevant context information from
analyzing IoT apps’ source code, annotations, and descrip-
tions. IoTGuard [13] dynamically collects the apps’ informa-
tion to enforce safety and security policies. However, these
approaches require good knowledge about the program frame-
work and app code. They have to modify the apps’ source code
or patch the apps and platforms to realize the discovery and
prevention of threats. As can be seen, most existing solutions
focus on the program analysis for platforms and apps. Then
we come up with a question: Can we open a new path to
enhance the defense of IoT security and privacy?

In this work, we look outside the IoT platforms and apps,
and rethink the IoT security and privacy problems from the
wireless perspective, and propose a new concept Wireless
Context in IoT. Distinct from the program-based con-
text, the IoT Wireless Context is inferred from the wireless
communication traffic. We propose and implement a novel
IoT security enforcement framework called IOTGAZE that
can detect potential anomalies and vulnerabilities in the IoT
system. First, IOTGAZE extracts the wireless packet features
to correlate the communication traffic with the interaction of
events between apps and devices. IOTGAZE constantly sniffs
the encrypted wireless traffic and generates the interaction



event sequence. Second, IOTGAZE discovers the temporal
event dependencies and builds the Wireless Context for IoT
system. Third, IOTGAZE extracts the actual user expected
IoT Context from IoT apps’ descriptions and user interfaces
(UI). By comparing the detected Wireless Context with IoT
Context, IOTGAZE can discover the anomaly in current IoT
system. Lastly, by exploring the wireless event dependencies,
IOTGAZE is able to discover the unknown vulnerabilities
that are caused by the inter-app interaction chain via hidden
channels, such as light, temperature, humidity, etc., and can be
exploited by the attacker to launch attacks against IoT system.

Contributions: The contributions of our work are:
• Distinct from the existing solutions, we open a new path

to rethink the IoT platform and app security issues from
the Wireless Context perspective and propose a
novel IoT anomaly and vulnerability detection framework
called IOTGAZE .

• We design a fingerprinting approach to detect the IoT
events and generate the sequence of the events via ana-
lyzing the wireless packets. We also propose an effective
mechanism to discover the temporal events dependencies
and produce the event transition graph that represents the
Wireless Context in IoT.

• We propose an approach that can extract the user ex-
pected IoT Context from apps’ descriptions and UI
using natural language processing (NLP). An algorithm is
designed to detect the anomaly based on the comparison
between the IoT Context and Wireless Context.

• By exploring Wireless Context, IOTGAZE can discover
the hidden vulnerabilities that are caused by the inter-app
interaction, which is ignored by most exiting IoT security
solutions.

• We prototype a proof-of-concept framework on the Sam-
sung SmartThing platform, including 183 apps. The ex-
tensive evaluations show that our approach can achieve
nearly 98% accuracy of anomaly detection. We also dis-
cover and provide a complete list of hidden vulnerabilities
in the IoT system detected by IOTGAZE .

II. THREAT MODEL

In this paper, we consider the security and privacy problems
on the typical IoT interaction chain: devices, apps, and IoT
platform. Based on the program framework, the developers
write apps that request the capabilities access privilege from
devices, and then control the devices to implement service au-
tomation. For instance, the description of one app is “Turn on
the indoor surveillance if the householder leaves home, other-
wise turn off the indoor surveillance”. The related IoT devices
are presence sensor and surveillance camera. The security and
privacy issues for the IoT system we want to detect are: (a)
App misbehavior. For instance, when the household is
at home, the app should turn off the surveillance to prevent
privacy leakage. But the app may not turn off the surveillance
and still monitor the activities of the household and uploads
the data to somewhere else. (b) Event spoofing. The
attacker may spoof a “presence.not_present" command to the

Fig. 1: Overview of IOTGAZE

IoT hub and the hub turns off the surveillance. Then the
intruder could break into the house. (c) Over-privilege.
The app may request irrelevant capabilities from the platform,
such as the lock control privilege. Then the app may unlock the
door when the household leaves home, which triggers serious
security issues. (d) Device failure. The hardware flaws
and software bugs may cause device failure. The attacker can
also launch an attack to make the device (e.g., surveillance
camera) unresponsive. (e) Hidden vulnerabilities.
This type of vulnerabilities is caused by some hidden channels
that multiple apps interact with simultaneously. Consider the
scenario where one heater control app can automatically turn
on the heater in winter after 8:00 PM, and another app opens
the window automatically if the room temperature is higher
than 90◦. The indoor temperature is the physical channel, and
the attacker can spoof a command event to let the heater keep
working, leading to an increase of the temperature, and finally
open the window and break in. We design a novel anomaly
and vulnerability detection framework called IOTGAZE that
addresses the above security and privacy threats in IoT system.

III. SYSTEM OVERVIEW

In this section, we provide an overview of IOTGAZE , and
describe key components and workflow, as shown in Fig. 1.

Wireless Context Generation. The challenge here is how
to use the sniffed raw wireless packets to generate the IoT
Wireless Context. We decompose this problem into
three subtasks: (1) How to correlate the wireless traffic with
the IoT interaction events and generate the fingerprints for
the events? We utilize limited features extracted from the
encrypted wireless traffic and generate effective fingerprints
to detect IoT events. (2) How to use the sequential packets
to generate the sequential IoT events? What we sniff is the
wireless packet sequence, but for vulnerability detection we
should work on events. Thus, we design an approach to
automatically segment the packet sequence and generate the
temporal event sequence. (3) How to discover the temporal
event dependencies and generate the wireless context? We
design an event dependency discovery method that accurately
extracts the event dependencies and their causal relationship
for building the wireless context graph.

IoT Context Generation. The IoT Context we define
here is the event interaction chain between smart apps (which
run in the cloud and interact with devices via the IoT gateway
such as SmartThings Hub) and devices. The IoT context is



the user expected app behaviors, which may not be the real
execution behaviors of apps. The malicious apps may deceit-
fully inform users about their functionalities but surreptitiously
execute some malicious activities. To accurately extract the
IoT context, we analyze the apps’ descriptions and UIs that
are directly exposed to users and usually cannot deceit users
compared with program code. We extract the IoT context from
app description and UI using NLP techniques and build the
corresponding event transition graph that represents the app
work logic expected by the user.

Anomaly and Vulnerability Detection. The IoT context
represents the IoT automation services expected by the user,
while the wireless context reveals what practical automation
services are happening. Each context is expressed by a set of
event transition graphs. We propose an approach to discover
the mismatch and anomaly by comparing the event transition
graphs under different contexts. By further analysis, we can
discover the hidden vulnerabilities that are caused by the inter-
app interaction and can be used by an attacker to launch
attacks. Then we can prevent the attacks before they happen.
Next, we describe these components of IOTGAZE in detail in
the following section.

IV. WIRELESS CONTEXT GENERATION

We design and deploy a third-party guardian who gazes at
the wireless communication traffic and detect potential anoma-
lies and vulnerabilities. The guardian sniffs the encrypted
wireless packets generated by the IoT activities and record the
packets sequence P = {p1, p2, ..., pi, ..., pn}. Our goal here
is to analyze the packet sequence and generate the wireless
context. The wireless context is represented by a set of event
transition graphs. In this section, we explain the procedures of
wireless context generation in detail.

A. IoT Event Fingerprinting

Before generating the event sequence, we need to correlate
the wireless traffic with the IoT events. We design the finger-
prints to identify the IoT events. To realize service automation,
event-driven smart apps receive data from various sensors
(such as motion sensor, temperature sensor, and contact sensor)
and issue commands to one or more actuators (e.g., smart bulb,
smart power outlet, and smart lock, etc.) via the local IoT hub
as the intermediary. We define IoT events as the activities
that IoT hub interacts with sensors and actuators via wireless
communication.

We use a packet sequence Pei = {p1, p2, ..., pi, ..., pNei
}

to represent the sniffed traffic for a unique event ei. We
extract the features from the packets’ attributes except the
encrypted data content to fingerprint the event. We list the
features as following:(1) Packet size. A packet size could vary
depending on what it transmits for which event. (2) Packet
direction. A packet could be sent from the hub to a device
or the opposite way. (3) Packet interval. The shorter packet
interval signifies the higher transmission rate. Due to the
difference of software and hardware, IoT devices may have
distinct transmission rate, burst rate, response latency, and

Fig. 2: Procedures of wireless context generation.

throughput, leading to varying packet interval. (4) Packet layer.
Packets may be transmitted in different layers for a specific
protocol. The above are common features across various wire-
less communication protocols, such as WiFi, Zigbee, Z-Wave,
and Bluetooth lower Energy (BLE). Each protocol may have
additional features. For example, The IP-based communication
protocol may have features like IP source/destination address
and source/destination port. By using the features set, we can
generate the following fingerprint for a unique IoT event:

Fei =

p1 · · · · · · pNei


f1,1 f2,1 · · · fNei
,1

f1,2 f2,2 · · · fNei
,2

...
...

. . .
...

f1,M f2,M · · · fNei
,M

where Nei denotes the number of packets transmitted for event
ei, and M denotes the number of features we extract for a
specific communication protocol.

We collect and create the fingerprints data set for each event,
and use the Random Forest supervised machine learning model
as the classifier C. The value of Nei varies depending on the
event ei. In order to feed the fingerprints matrix Fei into the
same machine learning model, we fix the number of packets
to N and pad the matrix with zero if Nei is less than N . The
optimal value of N will be discussed and selected in the later
evaluation section. Then we use the classifier C to classify the
new, unlabeled fingerprints and identify the events.

B. Sequential Events Generation

We analyze the sniffed packets sequence:

P = {(p1, t1), (p2, t2), ..., (pi, ti), ..., (pn, tn)}, (1)

and identify the events using the generated fingerprints. Con-
sidering the packets for an event are sent within a short
time. We use a sliding window with a maximum N packets
within a fixed time interval of T , and produce the matrix F .
Then we feed the matrix F to the classifier C and output
the probabilities for each event. If the maximum probability
value predicted from event ej is larger than the predefined
classification threshold θ, then we think the packet sequence
is created by event ej . Otherwise, we will go to the next sliding
window and continue to make the identification. The default
step size is one, and the step size changes to the number of
packets from event ej once event ej is detected.

C. Temporal Event Dependencies Detection

After identifying individual wireless events, we can con-
struct the event stream E = 〈(e1, t1), (e2, t2), ..., (en, tn)〉,
where ei (i = 1, . . . , n) is the wireless event happening at



time ti. Notice that ei and ej (i 6= j) can be the same event
happening at different time. A temporal event dependency
means a set of events occur together with a chronological
pattern. If event type a and b have a temporal dependency,
then the time interval between them should follow a normal
distribution N (µ(a, b), σ2) with σ being approximately equal
to the standard deviation of the network delay. Thus, even
though the expectation µ depends on the particular event
type, the standard deviation is independent of event types.
To determine if a and b are temporally dependent, we can
collect all the samples of time interval between a and b from
the event stream, and compute the sample standard deviation
σ(a, b) and compare it with the threshold τ (τ is a predefined
parameter which is slightly larger than the standard deviation
of network delay). If σ(a, b) < τ , then we conclude a and b
are temporally dependent, and vice versa.

Once we have identified all the pairs of events that are tem-
porally dependent, we reconstruct the dependency sequence
by concatenating these pairs. Formally, if [a, b] and [b, c] are
dependent pairs, and µ(a, c) = µ(a, b) + µ(b, c), then we can
get a dependency sequence [a, b, c]. Following such procedure,
we iteratively check and concatenate sequences. In addition,
we find that even if there is a dependency sequence [a, b, c, d],
[c, d] itself could be a dependency sequence. We further
discover these “subsequences of dependency sequences" using
the number of occurrence in the input event stream. For
example, if [a, b, c, d] occurs 100 times, [b, c, d] occurs 100
times, but [c, d] occurs 150 times, then we know that [b, c, d]
is not a dependency sequence (since it is just a part of the
dependency sequence [a, b, c, d]), but [c, d] is a dependency
sequence by itself and it occurs 50 times.

Generating Wireless Context. After discovering the event
dependencies, we can build the event transition graph for each
event dependency. As shown in Fig. 2, the event transition
graph 1 −→ 2 represents a certain wireless context, such
as “If detecting a human presence, open the surveillance
camera.”. The wireless context is extracted from the wireless
traffic and can reflect the real activities of the currently
installed apps. However, the wireless may not the expected IoT
context from the user. We introduce the approach to extract
the IoT context in the following section. If the wireless context
violates the IoT context expected by the user, then it indicates
potential anomalies in the current IoT system.

V. IOT CONTEXT GENERATION

In this section, we explain how to collect the IoT context
that is the expected automation services from users. Due to
the existing of malicious apps, the activities of smart apps
cannot represent the actual IoT context. Some existing work
conducts the static and dynamical analysis of the apps’ code
and checks if the actions of the program match what the
apps describe. Instead of analyzing the apps’ source code,
we exploit the apps’ description and UI that the apps usually
do not tamper or spoof. Fig. 3(a) shows the installation
interface of one SmartApp Brighten-Dark-Places. Based on
the app description, the user chooses to install the app or

Fig. 3: (a) The installation interface of the SmartApp Brighten-
Dark-Places in Samsung SmartThings platform. (b) The ca-
pabilities that one multipurpose sensor has for the Samsung
SmartThings platform.

not. Meanwhile, the needed capabilities are requested by the
app, and the user needs to select the devices that can provide
the capabilities. As we can see, the content in the installation
interface is directly exposed to the user and tells the user what
the app plans to do and is not usually tampered. If the user
chooses to install the app, that means the app’s description
can reflect the user truly expected app service. If we know
all the smart apps installed by the user, we can build the IoT
context based on these apps’ descriptions and UI. Now, we
introduce the IoT context generation approach and implement
it on Samsung SmartThings platform [3].

A. App Description Analysis

The research work [14], [15] has revealed that most IoT
applications following the “If-This-Then-That" (IFTTT) pro-
gramming paradigm, which can also be reflected by their apps’
description. The first step for analyzing apps’ behaviors is
to obtain the causal relationship from the description. One
effective method is to identify the conditional and main clause
from the description. The conditional clause involves some
sensors’ state change (e.g., the camera recognizes someone’s
face), and the main clause involves some devices’ actions (e.g.,
unlock the door). Then, we can extract the related devices
and their actions from the noun phrase and the verb phrase,
respectively.

We use Stanford parser [16] to analyze the sentence struc-
ture of the app descriptions. To segment the description
sentence into clauses, we build the constituency parse tree
and split the sentence by label S (Simple declarative clause)
or SBAR (Clause introduced by a subordinating conjunction).
As shown in Fig. 4, the extracted three clauses are: “Turn
on your lights", “a open/close sensor opens", and “the space
is dark". The subordinating conjunction “when" signifies the
causal relationship of the clauses via identifying the trigger
and action. We analyze the dependency parse tree in Fig.
5 and extract the noun phrase and verb phrase from each
clause. Considering the first clause as an example, “lights" is
the accusative object of the verb “Turn" and this dependency
is represented as dobj(“Turn", “lights"). But the extracted



Fig. 4: Stanford constituency tree representation of the de-
scription from the Brighten-Dark-Places SmartApp.

Fig. 5: Stanford dependency tree representation of the descrip-
tion from the Brighten-Dark-Places SmartApp.

semantic may be human-readable and not machine-readable.
We continue to do the capability matching process.

B. Capability Matching

The SmartApps interact with devices based on their ca-
pabilities. The capabilities have to be well decomposed
in order to prevent over-privilege. The Samsung Smart-
Things platform maintains a capability list [17] that Smar-
tApps can request. Fig. 3(b) shows the multipurpose sen-
sor has three capabilities that can provide to apps: capa-
bility.contactSensor, capability.temperatureMeasurement, and
capability.accelerationSensor. Although we have extracted the
app behavior from the description, there could still be a
semantic gap between the wording of the description and
the capabilities. Hence, we need to establish the relationship
between the non-phrases in the description and the capabilities.
The verb phrase in the same clause may also provide useful
information for the matching and could also be considered
during the matching. For example, “is dark" is more related
to “illuminance" than “the space".

We match noun phrases and verb phrases to the capabilities
based on the similarity score computed by the Word2Vec [18]
model trained on the part of Google News dataset (about 100
billion words). Because the Word2Vec only gives embedding
for words, we split every phrase into a tuple of individual
words. This operation is also performed for capability names.
We take the highest score of all the possible word pairs
between a phrase tuple and a capability tuple as the similarity
of these two tuples. Once we have the similarity score for
each phrase and capability pair, we match the clause to the
most similar capability. For each clause, if the most similar
capability is already taken by some other capabilities, the
second most similar one is chosen. Taking BRIGHTEN-DARK-
PLACES SmartApp as an example, the matching result is “Turn
on your lights" ↔ capability.switch, “a open/close sensor
opens" ↔ capability.contactSensor, and “the space is dark"
↔ capability.illuminanceMeasurement.

Fig. 6: IoT context generation from the Brighten-Dark-Places
SmartApp.

C. Event Transition Graph Generation

After extracting the app logic and matching the verb and
noun phrases to the actual capabilities, we discover the com-
mands from the verb phrases. For example, “Turn on" clearly
indicates the capability command capability.switch.on(). We
construct the SmartApp’s behavior as an event transition
graph where each node represents the capability command.
The complete workflow for our example SmartApp is shown
in Fig. 6. The final event transition logic is: contactSen-
sor.open→illuminanceMeasurement < threshold→switch.on(),
which shows the app work logic expected by user. We build
the event transition graphs for all the SmartApps installed by
a user, which represent the IoT context in the current
system.

VI. ANOMALY AND VULNERABILITY DETECTION

In this section, we introduce how to use the generated
wireless context and IoT context to discover the anomalies
and potential vulnerabilities in the IoT system. Each context
is represented by a set of event transition graphs. We use
G = {g1, g2, ..., gi, ...} and G′ = {d1, d2, ..., dj , ...} to
represent two sets of event transition graphs for IoT context
and wireless context respectively. The nodes in the graphs
gi and dj describe the corresponding IoT interaction events,
which are represented by the unified capability commands.
Meanwhile, all the events are numbered and given a global
ID. The IoT context is the user expected app behaviors, and
the wireless context is the actual app behaviors detected via
the wireless communication traffic. If the wireless context
violates the IoT context, that means potential anomalies and
vulnerabilities. For each detected event transition graph dj in
the wireless context G′, we check if we can find exactly the
matched event transition graph gi in the IoT context G. The
match means the dj and gi should have identical event IDs
and identical event dependencies. If there is no such match,
we think there is a potential anomaly in the system.



Fig. 7: Discovery of various anomalies.

Fig. 8: Discovery of hidden vulnerability.

The Fig. 7 provide the examples of the typical anomalies
we can detect via our approach. The first IoT context is “If
the water leak sensor detects the wet, close the valve, which is
represented by event transition Water_leak.wet→Valve.close().
For the wireless context, we only detect the first event and
miss the second event. This anomaly could be caused by
device failure or app misbehavior. The valve may
not work due to its hardware flaws or software bugs. Also,
the anomaly could be due to the app misbehavior. Once the
app receives the wet alarm from the water leak sensor, it
should send the command to close the valve. But from the
wireless side, the app does not execute the second step. The
second example is caused by event spoofing. Only when
detecting smoke, the window is opened, and the alarm is
triggered. But the attacker may spoof a fake smoke detected
event and trigger subsequent actions. For the third example,
we find an additional action Camera.close() is detected due to
over-privilege. The actual IoT context is If no presence
is detected, lock the door. The malicious app requests the non-
necessary privilege for the camera and closes the camera after
people leave the room. Then the attacker gets a chance to
break in without the camera monitoring.

Furthermore, our approach can detect the potential vulner-
abilities that are caused by the inter-app interaction chain.
Most research work focuses on the local behaviors for one
single app. They ignore the potential event interaction chain
that crosses multiple apps. The chain is formed via some
hidden channels, such as temperature, humidity, light, etc. The
formed interaction chain could be leveraged by the attacker to
launch attacks. Fig. 8 shows an example of how to discover
the vulnerabilities via our approach. For wireless context, we
detect a event chain 1 −→ 2 −→ 3 −→ 4 . But we can only
find the 1 −→ 2 and 3 −→ 4 in the IoT context. The first
app opens the humidifier once the humidity is less than a
threshold. Meanwhile, the humidity could influence the input
of the second app. One malicious app can change the threshold
and let the humidifier keeps working until triggering the water
leak alarm. IOTGAZE can detect such hidden vulnerabilities

Fig. 9: Smart devices and ZigBee packet sniffer used in our
testbed for evaluating IOTGAZE .

in advance and propose solutions to prevent such attacks.

VII. EVALUATION

In order to demonstrate the feasibility and effectiveness of
IOTGAZE , we implement our framework on the Samsung
SmartThings platform. Fig. 9 exhibits the IoT devices we use
in our testbed. All the devices are connected to a SmartThings
hub with ZigBee wireless communication protocol. We use
TI CC2531 USB Dongle [19] and install the Zigbee protocol
sniffer [20] to sniff the wireless communication traffic be-
tween hub and devices. A set of SmartApps is installed to
SmartThings to enable the provision of automation services.
We design extensive experiments from various aspects to
thoroughly evaluate our approach.

A. Anomaly Detection Evaluation

To verify the accuracy of our event fingerprinting approach,
we use the five most commonly used IoT devices for our
experiments: Motion sensor, Outlet, Water leak sensor, Philips
Hue A19, and Multipurpose sensor. These devices can generate
19 types of events that can be found via the SmartThings iOS
app. Each event corresponds to a SmartThings capability com-
mand. For example, Fig. 10(d) shows that the Philips Hue A19
can generate the following IoT events: power on/off, color con-
trol, dimmer control, and color temperature control. The cor-
responding capability commands are switch.on(), switch.off(),
colorControl.setColor(), switchLevel.setLevel(), and colorTem-
perature.setColorTemperature(). Our goal is to identify these
events via sniffing the wireless packets.

Event Fingerprinting Analysis. We collect the sniffed
Zigbee wireless traffic and correlate them with the downloaded
event history from the SmartThings app. Here are observations
from the experiments: (1) For most events, the packet size
sequences are distinct, as shown in Fig. 10. Although the event
pair motion detected/no motion, power on/off, and dry/wet have
the same packet length with different data fields, events in each
pair are contrary to each other, which implies that we can use
one variable to record the device’s status to distinguish these
events. (2) Although some sensors use identical capabilities
for the same purpose, their packet sequence and size are still
distinct. For instance, the motion sensor, water leak sensor,
and multipurpose sensor can all detect temperature change.
Once the temperate change is detected, they all send the same
event via capability command temperature.value. However,
their packet size sequences are distinguishable and can be
used for fingerprinting, as shown in Fig. 10(a)(c)(e). (3) The
direction of the packet in the sequence can also be used to
distinguish some events. We use 0 to denote the direction from



(a) Motion sensor (b) Outlet (c) Water leak sensor (d) Philips Hue A19 (e) Multipurpose sensor

Fig. 10: Packet size sequence from transmitted packets for different type events.
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Fig. 11: (a) Packet direction for outlet related events. (b) Packet direction for Philips Hue A19 related events. (c) # packets
transmission for different events. (d) Transmission time for different events. (e) Confusion matrix for event identification.

the device to the hub and use 1 for the reverse direction. Fig.
11(a)(b) show the packet directions for different events from
outlet and Philips Hue A19, and verify the effectiveness of
using packet direction as a fingerprint feature. (4) The inter-
packet time interval and the transmission time can also be used
to distinguish different events. The transmission time for each
event is shown in Fig. 11(c), from which we can see that the
shortest average transmission time is 0.1477s (for power meter
event), while the longest average transmission time is 2.0656s
(for color change event).

Event Collection and Model Training. To train the event
classifier C, we deploy the testbed in a typical office en-
vironment and continuously sniff and collect three weeks’
wireless packet sequence and build the fingerprint matrix for
each event. Fig. 11(d) shows that the maximum number of
packets transmitted, for all kinds of events, is 15. So we
set the parameter of N defined in section IV-A to be 15.
We label the data by matching the recorded event history
in the SmartThings app. For devices that are triggered very
infrequently in a real office environment, such as water leak
sensor, we manually wet and dry it to generate sufficient event
samples for the training. We train a random forest classifier
using the event samples.

Event Detection Analysis. Based on the devices’ capa-
bilities in our testbed, we select the existing apps in the
SmartThings Public Github Repository [21] and also develop
our customized apps to build a total of 35 apps library and
install them in the SmartThings platform. We constantly sniff
the wireless traffic for another one week and identify the event
in a real-time manner and generate the event sequence. We
set the value of parameter T and θ in Section IV-B to be
2.1s and 0.7 respectively. Before the identification, we remove

the unrelated packets, including beacon packets, link-maintain
packets, and acknowledgment packets. We still compare the
detected events with the recorded events in the SmartThings
hub and compute the detection accuracy. We select the ten
most frequently occurred events and show their confusion
matrix for classification in Fig. 11(e). The overall identification
accuracy is 98.46%. The detection failure is mainly due to
packet loss — the sniffer may miss some packets due to its
limitation or other signal interference.

Wireless and IoT Context Discovery. After generating
the sequence of the events, we mine the event dependencies
using our algorithm and discover the wireless context. We
successfully detect wireless context consisting of 35 event
dependencies. The first eight items in Table I show part of
the detected wireless context. We also use the proposed NLP
approach to extract the IoT context from 35 apps installed,
which exactly matches the detected wireless context. To further
evaluate the applicability of our approach, we generate some
complicated event dependencies, shown in the last four items
in Table I. We insert these events to the sequence of the
already existing events and verify that we can still discover
these complicated wireless context. The experimental results
demonstrate the effectiveness of our IoT context and wireless
context discovery.

Anomaly Generation and Detection. For the installed 35
apps, we design and insert malicious code to the apps to
generate anomalies. For each app, we modify its code to
generate the following three types of anomalies: (a) Event
Spoofing. We add the code in the app to spoof some events
for triggering purpose. The first three items in Table I show
the examples, such as event sequence changing from 1 −→ 2
to 1 −→ 2 . (b) App Misbehavior. For the item 4-6 in Table



TABLE I: Anomaly detection via the discovery and comparison of IoT and wireless context.

No. Event dependencies discovered in IoT context Detected wireless context
1 motion sensor motion.active−−−−−−−→ hub

switch.on()−−−−−−→ Philips Hue 1 −→ 2
2 multipurpose sensor

temperature.value−−−−−−−−−→ hub
colorControl.setColor()−−−−−−−−−−−−→ Philips Hue 3 −→ 4

3 outlet
power.value−−−−−−→ hub

switch.off()−−−−−−→ outlet 5 −→ 6
4 water leak sensor water.wet−−−−−→ hub

switch.off()−−−−−−→ outlet 7 −→ 6
5 multipurpose sensor acceleration.active−−−−−−−−−→ hub

switch.on()−−−−−−→ Philips Hue 8 −→ 2
6 multipurpose sensor

contact.open−−−−−−→ hub
switch.on()−−−−−−→ Philips Hue 9 −→ 2

7 multipurpose sensor contact.close−−−−−−−→ hub
switch.off()−−−−−−→ outlet 9 −→ 6 −→ 2

8 motion sensor motion.inactive−−−−−−−−→ hub
colorControl.setHue()−−−−−−−−−−−→ Philips Hue 1 −→ 10 −→ 2

9 hub
switch.off()−−−−−−→ bulb, hub

lock.lock()−−−−−−→ lock, hub
switch.on()−−−−−−→ camera 11 −→ 12 −→ 13

10 { multipurpose
contact.open−−−−−−→, illuminance sensor illuminance.value−−−−−−−−−→ } hub

switch.on()−−−−−−→ bulb { 9 , 14 } −→ 11

11 multipurpose
temperature.value−−−−−−−−−→ hub { colorControl.setColor()−−−−−−−−−−−−→ Hue,

switch.on()−−−−−−→ heater } 3 −→ { 4 , 15 }
12 { thermostat

presence.not_present−−−−−−−−−−−→, multipurpose contact.closed−−−−−−−→, lock lock.unlocked−−−−−−−→ } hub
lock.lock()−−−−−−→ lock { 16 , 17 , 18 } −→ 12

TABLE II: Anomaly detection results for three types of
anomaly.

Spoofing Overprivilege Misbehavior
Precision 97.22% 98.55% 98.29%

Recall 94.82% 98.36% 95.20%

I, we modify the apps’ code and make the app not execute
the triggered actions, leading to the event sequence change
from 7 −→ 6 to 7 −→ 6 . (c) Over-privilege. The item 7-8
show the anomaly samples we generate. We modify the code to
request the non-necessary capabilities and execute the addition
actions, such as changing from 9 −→ 6 to 9 −→ 6 −→ 2 .
For each app, we generate 100 anomalies for each threat type
and try to detect them via our approach.

The results of anomaly detection are shown in Table II.
We can see that the detection for overprivilege has both high
precision and recall. This is because the overprivileged event
sequence is different from all of the normal sequences, so the
precision and recall are just limited by the success rate of
event detection. Spoofing and misbehavior can occasionally
generate event sequence which match the normal app behavior.
Therefore, their precision is high but recall is low.

B. Hidden Vulnerabilities Discovery

The current research mostly focuses on security vulnera-
bility detection per SmartApp. The local behaviors of one
single app may explicitly or implicitly affect the whole IoT
system. The potential interactions between apps, devices, and
the environment may produce vulnerabilities that cannot be
discovered by per-app analysis. We propose to use the wireless
context to discover the hidden vulnerabilities that also can be
exploited by attackers.

In wireless context, we can find some wireless event de-
pendencies spanning multiple applications. This is because
these applications are somehow correlated together via some
hidden channels. We thoroughly investigate the 183 apps in the
SmartThings Public GitHub Repository [21] and analyze their
interactions with other apps, devices, and the environment.
We find that there are three kinds of channels that can cause

potential vulnerabilities: (1) Capability. Two applications can
interact if the first app’s output is the trigger of the second
app. For example, the SmartApp “NFC Tag Toggle” in the
official SmartThings GitHub allows toggling of a switch,
lock, or garage door. And another SmartApp “Door State
to Color Light (Hue Bulb)” changes the color of Hue bulbs
based on the door status. In this example, the two apps are
directly chained via the capability doorControl. (2) Physical
channel. The environment elements can be changed due
to the input or output of some apps and cause potential
interaction chains. We take one physical channel smoke as an
example. The toaster may cause smoke, which makes alarm
siren. (3) System channel. Some global variables in the IoT
program framework may be shared by some SmartApps. The
location.mode in SmartThings platform enables the devices
to behave differently in different scenarios. For example, if
the current location.mode is “Home” and the motion sensor
detects motion, then turn on the light. But if the location.mode
is “Away” and the motion is detected, then turn on the camera.
All these three kinds of channels can generate unexpected
application interaction, rendering system vulnerabilities.

We discover and provide the list of all the hidden vulnerabil-
ities for each type of channel from the SmartThings platform.
Based on the NLP approach in Section V, the capabilities
related to the apps’ input and output are extracted. We list
seven capabilities that are shared by apps in Table IV. The
capability switch(light) generates 127 potential inter-app inter-
action chains and has the highest risk score. We use Word2Vec
[18] to establish the mapping between physical channels and
apps’ input and output. In total, nine physical channels are
discovered, as shown in Table IV. The illuminance, energy, and
temperature are the channels that bring the most of inter-app
interactions. When we program the malicious apps, we show
that system variable location.mode from SmartThings program
platform location.mode are frequently used and modified by
some apps, which can also cause security-relevant issues. We
list the vulnerabilities found for each type of channel in Table
III and show the statistics about vulnerabilities in Table IV.



TABLE III: Hidden vulnerabilities discovery via analyzing wireless context.

No. Event dependencies discovered in wireless context
1 time−→hub

switch.on()−−−−−−→ heater −→ temperature −→ temperature sensor
temperature.value−−−−−−−−−→ hub

window.open()−−−−−−−−→ window

2 temperature sensor
temperature.value−−−−−−−−−→ hub

switch.on()−−−−−−→ fan −→ motion −→ motion sensor motion.active−−−−−−−→ hub
switch.on()−−−−−−→ light

3 water leak sensor water.wet−−−−−→ hub
switch.on()−−−−−−→ light −→ illuminance −→ illum sensor illuminance.value−−−−−−−−−→ hub

windowShade.close()−−−−−−−−−−−→ window shade

4 presence sensor
presence.not_present−−−−−−−−−−−→ hub

lock.lock()−−−−−−→ lock lock.lock−−−−−→ hub
colorControl.setColor()−−−−−−−−−−−−→ Hue

5 presence sensor
presence.present−−−−−−−−→ hub

switch.on()−−−−−−→ bulb switch.on−−−−−→ hub
camera.take()−−−−−−−→ camera

6 multipurpose sensor
temperature.value−−−−−−−−−→ hub

switch.on()−−−−−−→ AC switch.on−−−−−→ hub
switch.on()−−−−−−→ bulb

7 presence.not_present
presence.not_present−−−−−−−−−−−→ hub −→ location mode −→ hub

switch.off()−−−−−−→ light

TABLE IV: Statistics of hidden channels identified from
official SmartApps.

Channel
Type Channel # apps

related
# interaction

chains

Capability

swtich(light) 28 127
doorControl 4 4

lock 8 22
switch(heater) 10 27

switch(AC) 9 23
colorControl 7 6
thermostat 9 20

Physical

leakage 4 5
illuminance 29 132

energy 36 134
contact 20 37

acceleration 9 18
smoke 10 17

temperature 18 127
motion 14 13

humidity 4 3
System location.mode 9 16

VIII. RELATED WORK

IoT system is composed of protocols, devices, apps, plat-
forms, and the environment. The complexity of the IoT system
makes it challenging to resolve security and privacy issues.
Each component in the IoT system can cause potential threats
[22]. The device flaws [7], [7], [23] can be exploited by
attackers to infiltrate the IoT networks. For smart apps, the
static and dynamic program analysis [10], [11], [13], [24]
are used to track the apps’ control and data flow so as to
prevent the sensitive data leakage and identify the potential
app misbehavior. The research work [8], [9], [25] focus on the
platform security and try to exploit the design flaws of exiting
program frameworks and propose solutions to prevent app
over privilege and sensitive information leakage. For instance,
The authors [25] propose to collect provenance of events and
data state changes to build provenance graphs of their causal
relationships, enabling attack detection.

Some other techniques are also used to enhance the IoT
security. The device fingerprinting technique is developed
in [26], [27] to distinguish between legitimate devices and
attacker devices. By analyzing the encrypted network traffic,
[28] can build app fingerprints and [29], [30] can build the
fingerprints for identifying the types of devices. Model check-
ing is used in [31] as a building block to reveal “interaction-
level” flaws by identifying events that can lead the system to

unsafe states. Graph-based detection approaches [32], [33] can
also be applied to IoT to detect anomalies. Natural language
processing (NLP) is used in mobile apps [34]–[36] and IoT
apps [12], [37] to automatically extract security-relevant in-
formation from apps’ description, code, and annotations. The
extracted semantics are compared to the tracked control and
data flows in the program so as to detect apps’ misbehaviors,
which require complicated program analysis techniques. Our
approach considers the anomaly detection starting from the
view of wireless context. HoMonit [38] has a similar idea
with us, and it compares the IoT activities inferred from the
encrypted traffic with their expected behaviors dictated in their
source code. But, our work does not need to analyze the source
code and mainly focuses on the discovery of wireless context.
We generate the sequential IoT events and mine their temporal
event dependencies to explore all actual wireless context,
and then compare with the IoT context inferred from apps’
descriptions. By analyzing the wireless context, we can also
provide a new approach to discover the hidden vulnerabilities,
which HoMonit does not support.

IX. CONCLUSION

In this paper, we propose a novel IoT anomaly detection
framework called IOTGAZE . Instead of exploring the threats
inside platform and apps, we deploy a third-party monitor
IOTGAZE , who gazes at the wireless traffic and detects
the potential threats in the IoT system via analyzing the
encrypted wireless packets. We propose a new concept called
wireless context in IoT that represents the observed
app logic from wireless sniffing. We design a fingerprinting
based event detection approach and use it to generate the
event sequence via sniffed wireless packets. We design an
algorithm to discover the temporal event dependencies and
build the wireless context. We also extract the IoT context
that reflects user expected app behaviors via analyzing apps’
descriptions via natural language processing techniques. By
matching the wireless and IoT context, we can detect the
anomalies that are happening in the IoT system. Furthermore,
the event dependencies discovered by IOTGAZE can reveal
some potential vulnerabilities that are caused by the inter-app
interaction via some hidden channels. We prototype our ap-
proach on the Samsung SmartThings platform and demonstrate
the feasibility and effectiveness of IOTGAZE .
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